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Abstract. In prior work [1], we introduced a new problem, the rankability problem, which refers
to a dataset’s inherent ability to produce a meaningful ranking of its items. Ranking is a fundamental
data science task with numerous applications that include web search, data mining, cybersecurity,
machine learning, and statistical learning theory. Yet little attention has been paid to the question
of whether a dataset is suitable for ranking. As a result, when a ranking method is applied to an
unrankable dataset, the resulting ranking may not be reliable. In this technical report, we present
our preliminary work on extending these methods to weighted data.

Code: https://github.com/IGARDS /rankability_toolbox

1. Introduction. This research builds on two prior publications, [1] and [3]. We
summarize the relevant findings from each in the next two sections. In [1], Anderson et
al. posed the rankability problem as a fundamental yet little studied area of ranking.
The objective in ranking is to sort objects in a dataset according to some criteria
whereas the objective in rankability is to assess that dataset’s ability to produce a
meaningful ranking of its items. The initial rankability paper by Anderson et al. [1]
used Figure 1 to summarize the relationship between ranking and rankability and to
argue that a rankability assessment should be made prior to a ranking computation.
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Fic. 1. Current Pipeline for Ranking vs. Rankability’s New Pipeline. Ranking problems
follow the pipeline shown in solid lines. In [1], Anderson et al. added a new step, the rankability step
shown in dashed lines, which occurs prior to the computation of a ranking and measures how rankable
the data is. If the data has low rankability, then Anderson et al. identified which additional data
to collect or remove (potential noisy data) in order to improve the rankability. Once the rankability
measure is satisfactory, then a meaningful ranking that can be trusted is produced.

Ranking can be formulated as a graph problem, finding the order or rank of
vertices in a (weighted) directed graph. In this paper, we use data matrices and graphs
interchangeably.! Anderson et al. presented a rankability measure for unweighted (or

*Department of Computer Science and Software Engineering, California Polytechnic State Uni-
versity, San Luis Obispo, CA, USA (panderl4@calpoly.edu).

T Department of Mathematics, College of Charleston, SC 29401, USA (kathryn@behling.org).

fDepartment of Mathematics and Computer Science, Davidson College, Davidson, NC
(thcameron@davidson.edu).

§Department of Mathematics and Computer Science, Davidson College, Davidson, NC
(tichartier@davidson.edu).

9 Department of Mathematics, College of Charleston, SC 29401, USA (langvillea@cofc.edu).

LA square matrix of data can be transformed into a graph and vice versa (e.g., with a weighted

1

This manuscript is for review purposes only.


mailto:pander14@calpoly.edu
mailto:kathryn@behling.org
mailto:thcameron@davidson.edu
mailto:tichartier@davidson.edu
mailto:langvillea@cofc.edu

2. ANDERSON, K. PEDINGS-BEHLING, T. CAMERON, T. CHARTIER, AND A. LANGVILLE

uniformly weighted) graphs. Ranking and rankability problems for unweighted data
use binary dominance relations in a matrix D where d;; is 1 if a link exists in the
graph from item ¢ to item j, meaning 7 > j (¢ dominates j) and 0, otherwise. A 1 in
the (7, 7) position of the dominance matrix D means that ¢ dominated j by winning
either a single event or the majority of its multiple events. Applications that create
wins, losses, or draws yet no differential data create unweighted data. Binary survey
data (product A is preferred over product B) is an example of unweighted data.

The purpose of this paper is to extend rankability to weighted graphs. Often
dominance data carry more than just binary relations. Many sports conclude with a
margin of victory or a point differential. For the purpose of this paper we will often
resort to sports terminology (i.e., teams and scores). Despite this language, the reader
should understand that the work can be extended to other fields. For example, some
surveys use star ratings (e.g., hotel A has 5 stars while hotel B received only 2 stars).
In this case, the teams are hotels and the score was 5 to 2. There are many ways to
create a dominance matrix from such weighted data. A few follow.

e point differential. If team ¢ beat team j by 5 points, then d;; = 5 and d;; = 0.
e point score. If team 7 beat team j by a score of 50 to 45, then d;; = 50 and
dj; = 45.
e point ratio. If team ¢ beat team j by a score of 50 to 45, then d;; = 50/45
and dj;; = 45/50.
If there are multiple matchups between i and j, then average or cumulative values
may be used.

2. Summary of Rankability for Unweighted Data. This section summa-
rizes the key ideas from the Anderson et al. rankability measure for unweighted graphs
that, in Section 3, we will adapt to weighted graphs. Anderson et al. begin with the
ideal ranking situation. Consider four items with the following binary matrix D; of
pairwise dominance relations.

D,

I
= W N
oo oo =
OO O N
SO = =W
O R =

Suppose the items are teams and each team played every other team exactly once and
there were no ties in these matchups. Team 1 is in the first rank position because it
beat every other team, followed by team 2 which beat all teams except the superior
ranked item 1. Team 3 beat only team 4 and gets the third position and winless
team 4 fills in last place. It is clear that there is one unquestionable ranking of these
teams. Anderson et al. call such a matrix perfectly rankable. The matrix D5 is also
perfectly rankable, which becomes apparent after symmetrically reordering the rows
and columns according to the ranking of 2 4 3 1J.

adjacency matrix or the normal form of a LOP matrix [4]). A rectangular matrix A of items by
features can be transformed into a bipartite graph and vice versa. And this, if desired, can be
transformed into a square matrix (e.g., AAT).
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1 2 3 4 2 4 3 1

1 /0 0 0 O 2/0 1 1 1

D, = g } 8 (1] (1) and reordered Do = ;L 8 8 (1) 1
4\1 0 1 0 1\0 0 0 O

In real applications, perfectly rankable data is rare. For example, in the seven-
teen seasons from 1995-2012 and 24 conferences of NCAA Division 1 college football,
there was only one perfect season (the 2009 Mountain West conference). In terms
of rankability, all the other seasons and conferences in college football had imperfect
data. A goal of the Anderson et al. paper and this paper is to determine a more
fine-grained status of rankability beyond just the two classes of perfect and imperfect.

Anderson et al. define rankability as the degree of imperfection of the dominance
matrix, i.e., its distance from the perfectly rankable upper triangular matrix. In par-
ticular, Anderson et al. count k, the number of link changes (additions and removals)
required to make a matrix perfect. For example, the matrix D3 below requires just
k =1 change to make it into a 4 x 4 strictly upper triangular matrix.

3

D; =

=W N
OO OO
O OO N
O O ==
O O~ o

Either add a link from 3 to 4 resulting in the ranking of [I 2 3 4] or add a link
from 4 to 3 resulting in the ranking of [I 2 4 3]. Then Anderson et al. denote
p as the number of rankings that are this distance k£ from perfection. Thus, for Dj,
p = 2. The matrix Dy below is less rankable since it is much farther (k = 5) from
perfect and there are many (precisely p = 6) rankings that with five changes could be
transformed into a perfect dominance graph.

D, =

= W N =

OO O O
OO OO N
O DD OO W
OO O

In summary, the rankability measure of Anderson et al. for unweighted data
involves two ideas: [1].

e Distance from perfection. The scalar k is the distance that the input data of
pairwise dominance relations is from perfectly rankable data. In particular,
k is the minimum number of edges that must be added or removed from the

graph to transform it into a perfectly rankable graph.
e Distance from uniqueness. The scalar p is the number of rankings that are a
distance k from the given graph. And the set of these rankings is denoted P.
The rankability measure r of [1] combines k and p to create a rankability score that
is normalized to have values between 0 (unrankable) and 1 (perfectly rankable). In
particular, 0 < r = 1 — kz < 1, where kpar = (n? —n)/2 is the maximum
number of changes that cgilf be lmade to an n-node graph and p,.. = n! is the
maximum number of rankings of an n-node graph. The larger k£ and p are, the worse
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the rankability. Conversely, the smaller k& and p are, the better the rankability. At
their extremes, when k£ and p achieve their absolute minimums of k = 0 and p = 1,
the matrix is perfectly rankable.

The rankability integer program of [1], shown below as Model (2.1), takes as
input the matrix of binary dominance relations D. The integer program has two
sets of decision variables, z;; and y;;, that give information about which links should
be added or deleted to transform D into a perfect dominance graph. The decision
79 variable x;; is 1 if a link is added from ¢ to j, and 0, otherwise. The decision variable
80 yi; is defined similarly for the removal of a link from ¢ to j.

UL o W N

i B BN B BN BN |
N O

-3

81 (2.1) min Y (245 + yij)
i#A]
82 (dij +xij —yij) + (djs + x5 —yje) =1 Vi<j (anti-symmetry)
83 (dij +xij — yij) + (djgx + @ik — yji) + (drs +Tpi —yke) <2 Vji#Fi,k#jk#4 (transitivity)
84 0<uz;; <1—ds; Vi,j (only add potential links)
85 0<wyij <dij Vi, j (only remove existing links)
86 xij,yij; € {0,1} Vi#j (binary)
87
88 The anti-symmetry and transitivity constraints force the perturbed matrix D +

89 X —=7Y to be a dominance matrix that can be symmetrically reordered to strictly upper
90 triangular form. The ordering of nodes that achieves this upper triangular form is
91 the ranking. The optimal objective function value gives k, which is the minimum
92 number of perturbations to D (link additions in X and link deletions in Y') required
93 to achieve a dominance graph. The number of optimal extreme point solutions to
94  this rankability integer program is p and the set of optimal extreme point solutions is
95 P. Finding all optimal (extreme point) solutions is known to be a difficult problem
96 and thus computing the p part of the rankability measure required some algorithmic
97 ingenuity as described in [1].

98 3. Hillside Form: The Standard of Perfection for Weighted Data. This
99 paper extends Anderson et al.’s two ideas, distance from perfection and distance
100 from uniqueness, to weighted data. A distance from perfection for weighted data
101 first requires a definition of perfection for weighted data. As shown in the previous
102 section, for unweighted data, perfection is defined as a dominance matrix in strictly
103 upper triangular form (or a matrix that can be symmetrically reordered to such form).
104 Is there an analogous standard of perfection for weighted data? Prior work by Pedings
105 et al. [3] provides an answer. Pedings et al. defined a so-called hillside form.

106 DEFINITION 3.1. A matriz D is in hillside form if
107 dij <di, Yiand Vj<k (ascending order across the rows)
108 dij > dp;, Vi and Vi<k. (descending order down the columns)

The name is suggestive as a 3D cityplot of a matrix in hillside form looks like a sloping
hillside as seen in image on the right of Figure 2. The matrix Ds of weighted data
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below is in hillside form, while Dg is not.

1 2 3 4 5 1 2 3 4 5

1 /0 3 5 8 15 1/0 3 5 8 15

210 0 2 4 9 210 0 2 4 9
Ds=3|10 0 0 3 6 and Dg=3|7 0 0 3 4
410 0 0 0 5 410 0 0 0 5

5\0 0 0 0 O 5\0 0 0 0 O

A matriz in hillside form (or one that can be symmetrically reordered to such form)
has one unquestionable ranking of its items. For example, matrix Dy says that not
only is team 1 ranked above teams 2, 3, 4, and 5, but we expect team 1 to beat team
2 by some margin of victory, then team 3 by an even greater margin, and so on. For
n X n matrices in hillside form, the ranking of the items is clear: [I 2 --- mn].

As with unweighted data, it is rare for real applications with weighted data to
have (or be able to be reordered to have) hillside form. For example, recall the 2009
Mountain West season, which was perfectly rankable when win-loss binary unweighted
data were used. When, instead, point differential and thus, weighted data, is used,
this season is no longer perfectly rankable, i.e., there is no reordering that transforms
the original data into a hillside matrix. Thus, the next question becomes how to
define distance from perfection, i.e., distance from hillside form. This paper presents
two distances, which we call Hillside Count (see Section 4) and Hillside Amount (see
Section 5).

4. Hillside Count. The Hillside Count method counts the number of violations
of the hillside conditions of ascending rows and descending columns and denotes this
as k, the distance from perfection. A matrix with more violations is farther from
hillside form and thus less rankable than one with fewer violations. For example, the
matrix D5 above has 0 violations while Dg has 7 violations. Often a matrix that
appears to be non-hillside can be symmetrically reordered so that it is in hillside or
near hillside form. In fact, the non-hillside matrix D7 shown below is the perfect
hillside matrix D5 when D7 is reordered according to the vector 4 2 5 3 1].

1 2 3 4 5 4 2 5 3 1

1/0 0 0 0 O 4 /(0 3 5 8 15

219 0 4 0 2 210 0 2 4 9
D=3 5 0 0 0 0 and reordered Dy =Ds= 510 0 0 3 6
4115 3 8 0 5 310 0 0 0 5

5\6 0 3 0 O 1\0 0 0 0 O

Typically after a data matrix has been reordered to be as close to hillside form
as possible, violations remain. These violations are of two types: type 1 transitivity
violations and type 2 transitivity violations. Type 1 violations violate transitivity
in the ranking and manifest as nonzero entries in the lower triangular part of the
reordered matrix. In the context of sports, type 1 violations correspond to upsets,
i.e., when a lower ranked team beat a higher ranked team. On the other hand, type
2 violations violate the differentials required by hillside form. These violations occur
in the upper triangular part of the matrix. In the context of sports, type 2 violations
are weak wins, which occur when a high ranked team beats a low ranked team but
by a smaller margin of victory than expected. In the hillside method, an upset (i.e.,
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type 1 violation) typically naturally accounts for more violations than a weak win
(i.e., type 2 violation) as the example matrix Dg above demonstrates. The 7 in the
lower triangular part of the Dg matrix accounts for 6 of the 7 violations whereas the
weak win in the last column accounts for just one violation. It is possible to weight
these two types of violations in other non-uniform ways if the modeler has a greater
aversion to one type of violation over the other.

Finding the hidden hillside structure of a weighted dominance matrix was exactly
the aim of [3]. The method of Pedings et al. finds a reordering of the items that when
applied to the item-item matrix of weighted dominance data forms a matrix that is
as close to hillside form as possible [3]. Figure 2 summarizes the method pictorially.
The left is a cityplot of an 8 x 8 matrix in its original ordering of items, while the

original ordering optimal ordering

Fic. 2. Cityplot of 8 X 8 data matriz with original ordering and hillside reordering

right is a cityplot of the same data displayed with the new optimal hillside ordering.

Pedings et al. use this hillside form to find a minimum violations ranking of the
items, the ranking with the minimum k value. In contrast, our goal in this paper is to
produce a rankability score, rather than a ranking. Like Pedings et al. we use k, but
we also find another scalar p and we combine these to create a rankability measure
for weighted data. In particular, we define p, the distance from uniqueness, as the
number of rankings that, starting from D, are a distance of k violations from hillside
form.

Pedings et al. use the integer program of Model (4.1) to get k. Our contribution
is a method for getting p (see Section 4.1), which is the number of optimal extreme
point solutions of this integer program.

n o n
(41) minZZcU Tij

i=1j=1
gtz =1 Vi<j (antisymmetry)
Tij Tk +ap <2V iFLkFEGEFEG (transitivity)

x;; € {0,1} (binary)

The objective coefficients c¢;; are built from the weighted input matrix D of dom-
inance relations and are defined as ¢;; := #{k | dir < dji} + #{k | dri > di; },
where # denotes the cardinality of the corresponding set. Thus, for example, #{ k |
dir < dji } is the number of teams receiving a lower point differential against team ¢
than team j. Similarly, #{ k | dr; > di; } is the number of teams receiving a greater
point differential against team 4 than team j.> For this weighted rankability integer
program, the scalar k is the optimal objective value and p is the number of optimal

2The matrix C = [¢;;] above counts hillside violations in a binary fashion, however, something
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solutions. In general for linear and integer programs, finding all optimal solutions is
a difficult problem. Fortunately for our particular problem, we are able to use prop-
erties of the weighted rankability problem to devise an efficient method in Section 4.1
for finding the set of all optimal solutions, which we denote by P, and thus, p = | P|.

Figure 3 below is a pictorial representation of the difference between a more
rankable (bottom half) and a less rankable (top half) weighted matrix. The top half
of Figure 3 corresponds to the 2008 Patriot league men’s college basketball season,
which has rankability values of £k = 155 and p = 6. The bottom half corresponds to
the 2005 season, a much more rankable year with lower rankability values of & = 92
and p = 4. In each year, the left side shows the weighted dominance matrix D with
the original ordering and the right side shows an optimal hillside ordering output by
the weighted rankability integer program of Model (4.1) above. In the top half, the
less rankable year does not improve much from its original ordering to its optimal
ordering. For that less rankable 2008 year, the right side, though optimal, is not
great. Try as the integer program does, the data are just not very close to hillside
form. Compare this with the more rankable 2005 data in the bottom half of Figure 3,
a matrix that is much closer to hillside form. In other words, some data are just more
rankable than others. This paper quantifies exactly how rankable a given weighted
dataset is.

less rankable 2008 season, k=155, p=6

original ordering optimal ordering

Wi Ly

more rankable 2005 season, k=92, p=4

original ordering optimal ordering

Fic. 3. Cityplots of n = 8 college football data matrices with the original ordering (left) and
the optimal hillside reordering (right). The top row is the 2008 season, a less rankable season with
k = 155 and p = 6. The bottom row is the 2005 season, a more rankable season with k = 92 and
p=4.

4.1. Finding p and P for Hillside Count. Commercial optimization solvers
have an option to find multiple optimal solutions of a general integer program. The

more sophisticated can be done. For instance, we can consider weighted violations by summing
the difference each time a hillside violation occurs. In this case, the entries of C are defined as

Cij = Dokedyy <dyy (dik = dik) + 2opeay, >y, (ki — dij)-

This manuscript is for review purposes only.
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user can control a parameter that tells the solver how hard to look for multiple optimal
solutions. However, the user does not know if the solver has found all or just some
optimal solutions.

With default settings, solvers applied to the rankability integer program conclude
with the optimal objective value k and one solution matrix X from which an optimal
ranking can be built. However, most commercial solvers (e.g., Gurobi) have an option
to output any other optimal solutions found along the way. When this option (e.g., in
Gurobi, use the PoolSearch option) is set, upon termination, the rankability integer
program outputs k£ and several X matrices, each of which corresponds to an optimal
ranking, and hence, a member of P. We call this set of rankings partial P since we
cannot be sure if it is the full set P, the set of all optimal rankings, that we desire. We
propose the following procedure in order to determine (1) if this partial P is indeed
complete and hence the full set P and (2) if this partial P is incomplete, find the
remaining members of P to complete the set P.

Our contribution is a method that is guaranteed to find all optimal solutions of a
weighted rankability problem. This method is much more efficient than the elimina-
tive procedure that Anderson et al. develop for unweighted rankability problems [1].
Rather than eliminating the many branches of an n! tree of rankings, this procedure
instead accumulates optimal solutions by examining a tiny subset of full rankings from
the n! tree of rankings. In particular, this accumulative procedure examines locations
of fractional elements in the X matrix of the linear programming (LP) relazation of
the weighted rankability model that is solved by an interior point, not an exterior
point simplex, method. This last sentence generates two questions; Why an interior
point solver? And why the LP relaxation?

First, we explain the interior point solver. For general linear programs, when
multiple optimal solutions exist, i.e., when the feasible region has an optimal face
rather than one optimal point, interior and exterior point solvers both end with an
optimal solution. However, the difference lies in the location of this optimal solution.
The exterior point solution is an extreme point on the optimal face whereas the
interior point solution lies in the interior of the optimal face (and on or near the
centroid if Mehrotra and Ye’s [5] interior point method is used). For our work, we
prefer the optimal solution that is in the interior of the optimal face because it is a
convex combination of all optimal extreme point solutions. Theorem 4.1 below shows
that these optimal extreme points on the optimal face are the optimal rankings of the
weighted rankability problem.

In other words, the interior point solution can be considered a summary of all
optimal rankings. This is important as it enables us to work backwards, in Algo-
rithm 4.1 described later, from this summary solution to deduce all optimal rankings
on the optimal face, and, hence, form the full set P.

Next, we explain why we use the LP relaxation. Interior point methods are
designed for linear programs, not integer programs, so we solve the LP relaxation
of the rankability problem. The LP weighted rankability polytope for the weighted
rankability problem is defined as the anti-symmetry constraints z;; + xj; = 1), the
transitivity constraints (z;; + x5 + 2k < 2), and the bound constraints (0 < x;; < 1).
Notice that the bound constraints are simply a relaxation of the binary constraints of
the original integer program, and hence the name, LP relaxation. We compare the LP
rankability polytope with the IP rankability polytope, which we define as the convex
hull of all feasible solutions of the integer program of Model (4.1). Even though these
two polytopes do not always define the same region useful results regarding the 1P
rankability polytope can be gathered, as Theorem 4.1 shows, from the LP rankability
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245 polytope, i.e., the relaxed version of the problem.

246 THEOREM 4.1. Every ranking of a weighted rankability problem corresponds to a
247 binary extreme point of the LP weighted rankability polytope.

248 Proof. Every ranking r has a corresponding binary strictly upper triangular ma-
249 trix X(r,r) which denotes X after it has been symmetrically reordered according to
250 r. The matrix X is binary and clearly feasible since anti-symmetry and transitivity

251 are easy to verify from the upper triangular form of X(r,r). It remains to show that
252 X is an extreme point, i.e., that X cannot be written as a convex combination of
253  other extreme points. We do this by contradiction. Suppose that there exists a scalar
254 0 < a < 1 and, without loss of generality, exactly two binary feasible matrices Y # Z
255 such that X = a¥Y + (1 — a)Z. Since Y # Z, there exists at least one element,
256 say (¢,7) such that y;; # 2;;. Suppose, without loss of generality, that y;; = 1 and
257 z;; = 0. Then z;; = aw;; + (1 — @)z;; = a, which means that X is fractional, which
258  contradicts the statement that X is binary. Therefore, the assumption that X is a
259 convex combination of Y and Z is false and rather it is that X is an extreme point.0
260 The corollary below follows from Theorem 4.1.

261 COROLLARY 4.2. Every optimal ranking of a weighted rankability problem of Modell}

262 (4.1) corresponds to a binary extreme point on the optimal face of the LP weighted
263 rankability polytope.

264 When the LP relaxation of the interior point solver terminates, there are two
265 options for the optimal objective value k* (integer and non-integer) and two options
266 for the optimal solution matrix X* (binary and fractional®) creating the following
267 four outcomes.

268 0. k* is non-integer and X* is binary.

269 1. k* is integer and X* is binary.

270 2. k* is integer and X* is fractional.

271 3. k* is non-integer and X* is fractional.

272 Case 0 is actually not possible and therefore not an outcome because since C being
275 asum of counts is integer and X* is binary, then the objective value 331" | 377 | ¢;; o7
274 must be integer. Case 1 means that p = 1, there is a unique optimal solution, and
275 the LP solution is optimal for the IP. Case 2 is the most interesting to us and we will
276 return to it with Theorem 4.3 below to build the set P of all optimal solutions. Case
277 3 means that the LP solution is not optimal for the IP. Our experiments show that
278 Case 3, though possible, is very unlikely. This is also supported by Anderson et al.

279 [1] and Reinelt et al. [8, 4].
280 Theorem 4.3 pertains to Case 2 and gives clues for how to construct all optimal
281 solutions from the Interior Point solver’s X* matrix.

282 THEOREM 4.3. If the Interior Point solver of the LP relaxed weighted rankability
283 problem of Model (4.1) ends in Case 2 (k* is integer and X* is fractional), then

284 1. k* is the optimal objective value for the integer program,

285 2. X* is on the interior of the optimal face (i.e., the conver hull of all optimal
286 solutions) of the integer program, and

287 3. fractional entry (i,7) in X* means that there exists at least one optimal rank-
288 ing in P with xj; = 1 (thus, i > j) and at least one with xj; = 0 (thus,
289 i<j).

3If X* contains at least one fractional value, we say it is fractional.
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Proof. (1) (By Contradiction.) Assume otherwise. That is, assume k*, the opti-
mal objective value of the linear program, is not the optimal objective value of the
integer program. Then k* is suboptimal for the integer program and the integer pro-
gram’s optimal objective value must be an integer superior to k* such as k* — 1, k* —2,
.... However, this is impossible because the linear program, being a relaxation to the
integer program, must have an objective value equal to or superior to the objective
value of the integer program. In other words, the only possible superior objective
value for the linear program is a non-integer value yet this contradicts the fact that
we are in Case 2 with an integer objective value.

(2) We show (2) by proving that the extreme points of the convex hull of the
optimal face of the integer program are the extreme points of the optimal face of the
linear program. Because the linear program is a relaxation, its optimal face is either:
(a) equal to or (b) larger than the optimal face of the integer program. We will show
that option (b) is not possible and thus the optimal face of the linear program is the
optimal face of the integer program. Suppose the linear program’s optimal face is
larger than the integer program’s optimal face, then the linear program’s optimal face
must contain at least one fractional extreme point. (Any additional extreme point’s
on the linear program’s optimal face but not on the integer program’s optimal face
cannot be binary, otherwise they would already be on the integer program’s optimal
face.) Yet a fractional extreme point on the linear program’s optimal face would have
a non-integer objective value since the weighted sum of integer ¢;; with fractional z;;
must be non-integer. This contradicts the fact that for Case 2, the optimal objective
value k* is integer. Thus, option (b) is not possible. The only possibility then is
option (a): the linear program’s optimal face is the integer program’s optimal face.
Hence, the X* in the interior of the linear program’s optimal face is in the interior of
the integer program’s optimal face.

(3) By (2) above, we know that X* is in the interior of the optimal face of the
integer program, which means that X* is a convex combination of the p binary optimal
extreme points of the integer program, each of which, by Theorem 4.1, corresponds
to a ranking h denoted by the binary matrix X". Thus,

X* = X+ apX? + ..+, XP,

where 0 < a; < 1,37 a; =1, and X" is the binary matrix corresponding to optimal
ranking h. If the (i,7) entry of X*, z7;, is 1, then all rankings in P agree that i > j
can only be 1 if all xf] =1.

*

because x7;

xfj = alxllj + agx?j + ...+ aprj
=a1(l) +a2(l)+ ...+ ap(l)
= t+a+...+qp

=1

Similarly, at the other extreme, the only way that zj; = 0 is if all rankings in P agree
that ¢ < j, i.e., aczh] = 0 for all h. The remaining option for z7;
which can happen only if some xilj =1 (meaning ¢ > j) and some xfj = 0 (meaning
i < j). Thus, a fractional value in the (i,7) entry of X* represents disagreement
among the members of P about the pairwise ranking of items ¢ and j. |

is a fractional value,

Theorem 4.3 also means that while the values in fractional entries may not be
exact (since the interior point method is not guarantee to converge to the exact
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centroid), the location of fractional entries is exact. Thus, Theorem 4.3 inspires
Algorithm 4.1, a way to construct all optimal rankings in P.

Algorithm 4.1 Finding P from the fractional interior point solution of LP relaxed
Model (4.1).
Input: fractional X*, k*
1. Find r, the indices after sorting the row sums of X* in descending order.*
2. Create X*(r,r) by symmetrically reordering X* by r.
3. Identify fixed positions in the ranking by locating any so-called starting
arrows, ending arrows, and binary crosses in X*(r,r).
4. The remaining positions are non-fixed, varying positions, that corre-
spond to fractional submatrices in X*(r,r).
5. For each fractional submatrix, create a list of alternative subrankings for
these rank positions by letting each fractional element (7,j) take its two
extreme values of 0 and 1, meaning ¢ < j and @ > j.
6. Assemble the fixed subrankings and alternative fractional subrankings into
full rankings in all possible ways.
7. Evaluate each full ranking from Step 6 for optimality. All optimal rankings
create the set P.

Output: P

When X*, the interior point solution of LP relaxation of Model (4.1), is binary,
r is an optimal ranking, i.e., a member of P. Thus, in Step 1 of Algorithm 4.1 when
X* is fractional, r may or may not be in P. Nevertheless, this reordering is helpful.
For Step 2, if X* is binary, then X*(r,r) is a strictly upper triangular matrix. Since
we are in Case 2 and X* is fractional, X*(r,r) is a nearly strictly upper triangular
matrix with deviations from the upper triangular structure that are noticeable and
helpful as shown in Step 3. Examples 1-3 on the subsequent pages contain each
of the three “fixed position” structures (starting arrows, ending arrows, and binary
crosses) of X*(r,r). A binary cross is a band of rows and columns that contain
entirely binary elements. For Step 4, a submatrix is called fractional if there exist
any fractional elements. Thus, a fractional submatrix can contain both binary and
fractional elements. Suppose Step 4 locates a 8 x 8 fractional submatrix. Then in
Step 5, there are 8! subrankings of these 8 items in the corresponding 8 rank positions.
Yet for Step 5, often many fewer than 8! subrankings need to be created since the
8 x 8 fractional submatrix typically also has many binary dominance relations that
also must be satisfied and this, fortunately, greatly reduces the list of alternative
subrankings that are possible. For Step 5, it is also helpful to identify fractional
crosses in the fractional submatrix. A fractional cross is a roving item that can
range over all rank positions in the subranking.

The three examples on the subsequent pages demonstrate the accumulative pro-
cedure for finding all optimal solutions for a weighted rankability problem. All three
examples are from the Big 12 conference of college football. For each example, we
display the optimal solution matrix X* output by the Interior Point solver of the
linear programming relaxation of the weighted rankability problem. In all three ex-
amples, the X* matrix is fractional, so we can apply ideas from Theorem 4.3 and
Algorithm 4.1 to build the set P of all optimal solutions.

Example 1. The 2005 season has the optimal fractional X* matrix shown in
Figure 4.
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binary cross creates
four fixed positions of
items 6,7, 11, and 4

starting arrow creates in sixth through ninth

one fixed position in places
first place
10 12 8 3 2 6 7 11 4 1 5 9
10 / 0O 1 1 1 1 1 1
12| 0 0 50 O 1 11 1 1 1 1 1
8 0 .50 0 1 1 11 1 1 1 1 1
3 0 0 0 0 b1 1 1 1 1 1 1 1
2 0 0 0O 49 o0 1 1 1 1 1 1 1
. 6 0 0 0 0 1 1
X(rr)= 7 0 0 0 0 11
11 0 0 0 0 1 1
4 0 0 0 0 1 1
1 0 0 0 0 0O 00 O O 0 .Bb3 1
5 0 0 0 0 0O 0 0 O O 47 0 1
9 0 0 0 0 0 0 0

ending arrow creates
one fixed position in
last place

F1G. 4. The interior point solution of Example 1 is a fractional matriz X*(r,r) with a starting
arrow, ending arrow, and binary cross.

The first row and column are binary, creating a starting arrow. This means that
the first item, item 10, belongs in the first rank position. There are no other candidates
for this position. Similarly, there is an ending arrow in the last rank position so item
9 belongs in the final position. In addition, there is another binary structure in the
matrix; notice the binary cross near the center of the matrix, covering the bands
corresponding to the rows and columns for items 6, 7, 11, and 4. This means that
these items must appear in the sixth through ninth rank positions in that order. The
remaining rank positions in X*(r,r) contain fractional values, which, from Theorem
4.3, we know represent alternatives for the corresponding rank positions. For example,
in the second and third rank positions, items can be ordered either 8 then 12 or 12
then 8. In the fourth and fifth rank positions items 3 and 2 can be ordered in any of
the 2! ways. Finally, the same thing happens in the tenth and eleventh rank positions
with items 1 and 5. This creates a set of 2 x 2 x 2 = 8 rankings that must be evaluated
for their optimality. In this case, all 8 rankings shown below built from X*(r,r) are
indeed optimal with a objective value of k* = 255. Thus,

[10] [10] [101 [101 [10] [101 [101 [10]
12 8 12 8 12 8 12 8
8 12 8 12 8 12 8 12
3 3 2 2 3 3 2 2
2 2 3 3 2 2 3 3

p_ 6 6 6 6 6 6 6 6
AN A A A N B
11 11 11 11 (11 11 11 11
4 4 4 4 4 4 4 4
1 1 1 1 5 5 5 5
5 5 5 5 1 1 1 1
9] 9] 9] 9] 9] L9) 9] L9
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Example 2. The 2010 season has the optimal fractional X* matrix shown in
Figure 5.

binary cross creates

four fixed positions of
items 6,7,5,and 1 in
fourth through seventh

starting arrow creates
places

one fixed position in

first place 8 11 9 6 7 5 1 3 12 10 2 4
8 /0 1 1 11 11
mlo o 5111 11 1 1 1 1 1
9lo 49 o 1 1 11 1 1 1 1 1
6 0 0 | | | |
7 0 0 1 | | 1

. 5 0 0 11 1 1

X*(rr) = 0 0 0 1 1 1 1
3o 0o 0o 0000 0 4 1 1 1
1200 o0 o 0000 5 0 55 1 1
0l0 0 0 0000 0 4 0 .60 1
2 0 0 0 0O 0 O O 0 0 .40 0 1
4 0 0 00 0 0 0 0

ending arrow creates
one fixed position in
last place

Fic. 5. The interior point solution of Example 2 is a fractional matriz X*(r,r) with a starting
arrow, ending arrow, and binary cross.

Example 2 has a starting arrow that covers one rank position, an ending arrow
that covers one rank position, and a binary cross that covers four more rank posi-
tions. So, in total, 6 of the 12 rank positions are fixed. The remaining six rank
positions have fractional values that leave room for alternative subrankings in these
rank positions. In particular, the second and third rank positions can be filled with
8 then 11 or 11 then 8, while the eighth through eleventh rank positions can be filled
in various ways with the four corresponding items of 3, 12, 10, and 2. In the eighth
through eleventh rank positions, we could, of course, consider the 4!=24 ways of ar-
ranging these four items. However, due to the binary values in this 4 x 4 submatrix
of X*(r,r), there are actually many fewer subrankings that need to be considered.
In fact, a tree can be built with just 5 subrankings of these four items (namely,
[3 12 10 2],[3 10 12 2],[3 12 2 10],[12 3 10 2],[12 3 2 10]). This creates a total of
2 x 5 = 10 full rankings that need to be evaluated for their optimality. After eval-
uation, 6 of these 10 rankings are optimal with an objective value of k* = 256 and

p* =6.
Example 3. The 2004 season has the optimal fractional X* matrix shown in
Figure 6.

Example 3 has a starting arrow that covers three rank positions and an ending
arrow that covers two rank positions. So, in total, 5 of the 12 rank positions are fixed.
The remaining seven positions have fractional values that can be used to create the
alternative rankings that will be evaluated to see if they belong in P. The fourth and
fifth rank positions can be filled as either 12 then 9 or 9 then 12. Then the sixth
through tenth rank positions corresponding to the 5 x 5 fractional submatrix creates
a fractional cross that can be used to reduce the number of 5! = 120 subrankings
that need to be considered. This fractional cross means that the corresponding item,
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starting arrow creates
three fixed positions in
1¢, 2", and 3" places

no binary cross

8 10 11 12 9 3 2 6 7 4 5 1
8 /0 1 1 1 1 1 1 1 1 1
wfo o 1 1 1 1 1 1 1 1
1m7lo o o 1 1 1 1 1 1 1
200 0 o0 50/ 1 1 1 1 1 1 1
910 0 0|5 o/ 1 1 1 1 1 11
X*(r.r) = 3100 0 0 o0/,0 1 66 1 1]/]1 1
’ 210 0 0 0 0,0 0 54 1 1|1 1
6 0 0 O 0 0 34 46 0 56 67 |1 1
7 0 0 0 O 0 0 0 4 0 1 (1 1
4 0 0 0 O 0 0 0 33 0 0 |1 1
5 0 0 0 0 0 0 0 01
1 0 0 0 0 0 0 0 00

ending arrow creates
two fixed positions in
last two places

F1G. 6. The interior point solution of Example 3 is a fractional matriz X*(r,r) with a starting
arrow, an ending arrow, and two isolated, though neighboring, fractional submatrices. The 5 X
5 fractional submatriz has a roving item, item 6, that can range over all rank positions in this
subranking.

item 6, is a roving item and can appear in all five rank positions in this subranking.
Otherwise, the remaining elements in this 5 x 5 submatrix are binary, meaning that
these items must appear in the given order of 3, 2, 7, 4 with 6 inserted in the five
slots between these four items. Thus, there are only 5 subrankings ([6 3 2 7 4], [3 6
274],[32674],[32764],[32746]) that need to be paired with the 2 other
subrankings to create 10 full rankings that must be evaluated for optimality. After
evaluation, all 10 of these 10 rankings are indeed optimal with an objective value of
k* =254 and p = 10.

4.2. Lowerbound on p. In this section, we provide a lowerbound and thus,
estimate, on p, the number of rankings in the set P of all optimal rankings. This
bound may be helpful for a large example that has a complicated highly fractional
X* matrix, which, in turn, makes it difficult to assemble rankings to evaluate in
accumulative Algorithm 4.1.

THEOREM 4.4. If X* is the exact centroid of all optimal rankings for a weighted
rankability problem, then
P> Pw ;
m

where m is the smallest fractional element in X*.

Proof. Assume it is the (7, j) entry of X* that holds the smallest fractional value
m. The only way this entry can have a nonzero value is if at least one of the p binary
optimal rankings X" for h = 1,2,...,n has i > j, which means there exists at least
one xf] =1for h = 1,2,...,n. Suppose that exactly one of the optimal rankings,
say X!, has i > j so that xllj = 1. X* is the centroid of all binary optimal rankings
X! X2, ...,XP? and can be written as the following convex combination

1 1 1
X* =X 4 -X24+... 4 -XP.
P p p
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Thus, m = zj; = 11;(1) = zl) and p = L. Now suppose exactly two of the p binary

optimal rankings have i > j, then m = zj; = %(1) + %(1) = % and p=2 > L.
Continuing in this fashion, it follows that p > %, regardless of the number of binary
optimal rankings that contribute to the fractional m. Since p is an integer, % can be

rounded up to the nearest integer. ]

The previous section and Theorem 4.3 recommended solving the weighted rank-
ability integer program with an LP relaxation solved by an Interior Point method.
When the solver concludes in Case 2 (k* integer, X* fractional), then Theorem 4.3
showed that X* is a convex combination of all optimal rankings. And when an Inte-
rior Point solver such as Mehrotra and Ye [5] is used, X* is likely near the centroid.
While this is not the exact centroid required by the hypothesis of Theorem 4.4, it is
close enough to give an estimate of a lowerbound. In Table 1, we apply lowerbounding
Theorem 4.4 to the three examples of the previous section.

TABLE 1
Applying the lowerbound on p.

I
Example 1 (Big 12 season 2005) | .47 3 8
3
4

Example 2 (Big 12 season 2010) | .30
Example 3 (Big 12 season 2004) | .33

COROLLARY 4.5. If X* is the exact centroid of all optimal rankings for a weighted
rankability problem, then fractional entry (i,7) is the percentage of rankings in P that
have i > j.

For Case 2, interior point methods conclude near the exact centroid and thus
a fractional entry in the optimal solution is an approximation to the percentage of
rankings in P that have ¢ > j.

5. Hillside Amount. Our second method for producing a weighted rankability
measure is called the Hillside Amount method. Like the Hillside Count method,
Hillside Amount uses hillside form as the definition of perfection. However, Hillside
Amount uses a different way of calculating the distance from perfection, k. The
Hillside Amount method solves the integer program below to find X and Y matrices
that when respectively added to and subtracted from D transform D + X — Y into
hillside form with the least amount of changes, hence the name Hillside Amount.
The optimal objective value is k, the distance from perfection, and the number of
alternative optimal rankings is p, the distance from uniqueness. The set of all optimal
rankings is P. The binary Z matrix is a LOP (linear ordering problem) matrix that
can be reordered to a strictly upper triangular matrix. Any reordering that does this
is an optimal ranking.
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(5.1) minZZ(%‘j + Yij)
i g

(dij + xij — yij) Vi#£j (if 2;;=0, i.€., j>i, then di]-+.7:7:j—yij:0)
(djk + 2jk — Yjx) — (dik + ik — Yik) Vij#i,k#j,k#i (hillside rows)
(dri + s — Yri) — (dj + Ty — yng) < Mzjs Vj#4,k#j,k#i (hillside cols)

< Mz
< szz

zij 2z =1 Vi<yg (LOP anti-symmetry)
Zij 2k + 20 <2 ViFik#FG kA (LOP transitivity)
0<wiyj <M—dy; Vi#j (Ib, ub)
0<y; <dij Vi#j (Ib, ub)
zij € {0,1} Vi#j (binary)

Comparing Model (5.1) with Model (2.1) reveals that the Hillside Amount method
is a direct extension of the Anderson et al. method for unweighted graphs to weighted
graphs. Figure 7 demonstrates the Hillside Amount method by comparing two weightedll
datasets, the 2000 and 2016 seasons from the mid-American conference of college foot-
ball.

less rankable 2000 season

D, original ordering D(r,r), optimal ordering X-Y, optimal ordering

e W ™

more rankable 2016 season

D, original ordering D(r,r), optimal ordering X-Y, optimal ordering

Fic. 7. Cityplots of two weighted matrices with the original ordering (left), the optimal hillside
amount reordering (center), and the additions and deletions required to bring the matriz to hillside
form (right). The top row is the 2000 season, a less rankable season with a Hillside Amount k = 604.
The bottom row is the 2016 season, a more rankable season with k = 361.

The top half of Figure 7 corresponds to the 2000 season, which has a Hillside
Amount rankability value of & = 604. The bottom half corresponds to the 2016
season, a much more rankable year with a better lower rankability value of k = 361.
In each year, the left side shows the weighted dominance matrix D with the original
ordering and the center image is the matrix reordered according to the optimal hillside
amount ordering output by the weighted rankability integer program of Model (5.1)
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above. The image on the right shows the amount of additions (i.e., X) and deletions
(i.e., Y) that were required to transform the matrix into a hillside matrix. The
rightmost images show that many more changes must be made to the 2000 season
than to the 2016 season (k = 604 vs. k = 361, to be precise). Thus, according to
the Hillside Amount method, the 2016 season is much more rankable than the 2000
season. In summary, Hillside Amount provides another method besides Hillside Count
to quantify just how much more rankable one weighted dataset is than another.

5.1. Finding p and P for Hillside Amount. In addition to k, we also need
p and P, the other main piece of the rankability measure. Unfortunately, unlike
the Hillside Count method, the LP relaxation of the Hillside Amount integer program
does not provide anything meaningful. This is because the z;; variables of Model (5.1)
must be binary in order for the if-then structure of the first three sets of constraints
to work. Thus, we must find the set P in another manner. We adapt a method
from Anderson et al. [1] to fit this Hillside Amount work. In particular, we build
a tree that we prune to avoid considering all n! rankings until we are guaranteed
to find all optimal rankings in the set P. The pruning method works as follows.
First solve Model (5.1), finding the optimal objective value k*. Then build a tree
of rankings by considering subrankings either sequentially or in parallel. Prune all
branches emanating from a subranking whose corresponding submatrix of D has a sum
of lower triangular elements greater than k*. For example, if subranking s = [1 4 6 2]

1 4 6 2
1/0 0 11 8
410 0 9 6 . .
and D(s,s) = 6l7 0 0 7| then the sum of elements in the lower triangle of

2\0 0 3 O
D(s,s) is 10. Thus, if step 1 found the optimal objective value k* less than 10, then
any ranking beginning with (or consisting of) subranking s can be eliminated since it
cannot be optimal. Clearly, this algorithm is more efficient when branches are pruned
closer to the root node of the tree.

6. Revisiting the Unweighted Problem. Anderson et al. designed rankabil-
ity methods for unweighted graphs [1]. In the next three subsections, we show three
ideas from this paper on weighted data that can be applied to unweighted data.

6.1. Hillside Count for unweighted data. We designed the Hillside Count
method of Section 4 for weighted matrices, yet it can also be used for unweighted
matrices. Thus, Hillside Count provides an alternative to the method of Anderson
et al. for unweighted graphs [1]. The two methods differ in their definition of &, the
distance from perfection. The method of Anderson et al. defines k as the number
of link additions and deletions required to transform the dominance matrix D into
a reordering of strictly upper triangular form, whereas the Hillside Count method
defines k as the number of violations of the hillside constraints regarding ascending
rows and descending columns. For unweighted data, Hillside Count finds a reordering
that transforms the dominance matrix D into a form that is as close to strictly upper
triangular form as possible and then counts hillside violations from this as k. So the
two methods, Anderson et al. and Hillside Count, are related. In order to understand
the differences, we applied both methods to the unweighted data of the 2000-2012
seasons of the Big East conference of NCAA college football. Table 2 shows that
these two rankability methods are correlated.

But do we really need another method for unweighted data? What is to be gained
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TABLE 2
Comparing rankability methods for unweighted data: Anderson et al. [1] vs. Hillside Count for
2000-2012 seasons of the Big East conference of college football.

Anderson k, p  Hillside Count k, p
2000 1.1 28, 4
2001 2,1 10, 4
2002 2,1 10, 4
2003 4.1 22, 4
2004 6, 1 40, 48
2005 4,1 25, 12
2006 8,4 36, 8
2007 12, 7 72, 24
2008 6, 3 32,12
2009 4,1 28, 24
2010 8,3 60, 12
2011 8,3 52, 24
2012 8,1 52, 48

by using the Hillside Count method for unweighted data? The 2000 and 2003 seasons
show the value of the Hillside Count method. These two years have the same Anderson
et al. rankability values (k = 4 and p = 1), yet the Hillside Count values differ (k = 28
and p = 4 for year 2000 and k = 22 and p = 4 for 2003). How is the Hillside Count
method differentiating between these two years? Compare the 2000 and 2003 D(r, r)
matrices below, which are dominance matrices symmetrically reordered according to
optimal ranking r given by the Hillside Count method.

7 2 1 5 8 3 6 4 8 2 3 7 1 4 5 6

7 0 1 1 1 1 1 1 1 8 0 0 1 1 1 1 1 1

2 0 0 1 1 1 1 1 1 2 1 0 1 0 1 1 1 1

1 0 0 0 1 1 1 0 1 3 0 0 0 1 1 1 1 1

D2000 (r7 I') — 5 0 0 0 0 1 1 1 0 and D2003(r7 r) — 7 0 1 0 0 0 1 1 1
8 0 0 0 0 0 1 1 1 1 0 0 0 1 0 1 0 1

3 0 0 0 0 0 0 1 1 4 0 0 0 0 0 0 1 1

6 0 0 1 0 0 0 0 1 5 0 0 0 0 1 0 0 1

4 0 0 0 1 0 0 0 0 6 0 0 0 0 0 0 0 0

The entries contributing to hillside violations are highlighted in red. Year 2000 has
just two nonzeroes in its lower triangular, while year 2003 has four. Yet though year
2000 has fewer nonzeroes in the lower triangle than year 2003, it has more hillside
violations, resulting in a slightly worse rankability score for k (28 vs. 22). This occurs
because nonzeroes farther from the diagonal contribute more hillside violations than
nonzeroes closer to the diagonal. In other words, big upsets (i.e., type 1 violations
in the lower triangular that are far from the diagonal) naturally cost more than mild
upsets (i.e., type 1 violations in the lower triangular that are near the diagonal). In
this example, the Hillside Count method has determined that year 2000’s two big
upsets (the penultimate team beating the third place team and the last place team
beating the fourth place team) are worse than year 2003’s four mild upsets between
neighboring teams (2"¢ place over 1°¢ place, 4" over 2"¢, 5! over 4*" and 7" over
5t"). Thus, the Hillside Count method is preferred over the method of Anderson et
al. when the built-in accounting of rank violations by the severity of the violation is
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important.

For unweighted data, another advantage of the Hillside Count method over the
method of Anderson et al. is the simplicity, elegance, and history of the Hillside
Count’s model formulation in Model (4.1). Hillside Count’s Model (4.1) is cleaner than
Anderson et al.’s Model (2.1). As mentioned earlier, the constraints of Hillside Count’s
Model (4.1) are the classic and famous linear ordering problem (LOP) polytope. The
linear ordering problem starts with information on pairwise relationships between
items and creates a linear ordering of the items that is most consistent with the
data. For this reason, ranking is also referred to as the linear ordering problem.
The 2011 book by Reinelt and Marti [4] surveyed the state of the art for the LOP.
These authors describe the best approximate and exact algorithms for solving the
LOP. Many heuristic methods and nearly all exact methods revolve around the so-
called canonical LOP integer program and its linear programming relaxation. The
constraints of the LOP create the LOP polytope [9, 8] and much progress has been
built around the theory related to this polytope, e.g., creating valid inequalities and
cutting planes [2, 6, 7, 8]. In summary, because Hillside Count Model (4.1) is an
optimization problem over the LOP polytope, some LOP algorithms may be able to
be tailored to solve large instances of rankability problems. This is a direction for
future work.

UPDATE WITH ALLOPT for LOP references.

6.2. Revised Method to find p and P for Anderson et al. A second rank-
ability idea from this paper on weighted data that can be applied to unweighted data
concerns the p half of the two rankability pieces k and p. As a result of Section 6.1,
we now have two choices for rankability methods for unweighted data: the original
Anderson et al. method and the Hillside Count method. As mentioned in the previous
section, these two methods measure slightly different aspects of rankability. Suppose
that a practitioner has some modeling reasons for preferring the method of Anderson
et al. for her unweighted application. The most expensive part of the Anderson et
al. rankability measure is the pruning tree for finding p. In this section, we replace
that pruning tree with the more efficient accumulative method of Algorithm 4.1 for
finding p and P. In order to do this, we must replace the original Anderson et al.
Model (2.1) with the alternative model, Model (6.1) shown below and first presented
in [1].

(6.1) madeijzu
iz
zigtzii=1 Vi<j (anti-symmetry)
zij ¥ zjp+ 20 <2 ViFik#jk#i  (transitivity)
zij € {0,1} Vi#j (binary)

The constraints of this alternative formulation, which is now a maximization,
encompass those of the original Anderson et al.’s Model (2.1) and are arrived at
with the simple substitution z;; = d;; + z;; — ys5. The following rules are used
to translate the solution from this alternative formulation into the solution for the
original formulation. If z;; = 0 and d;; = 1, then set y;; = 1. If 2;; = 1 and d;; = 0,
then set x;; = 1. Then £ is the number of nonzeros in X plus the number of nonzeros
inY, ie., k=nnz(X) +nnz(Y).

Notice that the constraints of the LP-relaxed version of this alternative Model
(6.1) are exactly the same classic LOP constraints that form the LOP polytope [8] and,
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thus, are exactly the same constraints and polytope for the Hillside Count Model (4.1).
In other words, the LP LOP polytope, the LP weighted rankability polytope, and the
LP unweighted rankability polytope are identical. Only the objective functions differ.
This means that theorems similar to those of Section 4.1 for weighted rankability
Model (4.1) can be proven for this unweighted rankability Model (6.1) above. Namely,
we have the following results.

THEOREM 6.1. Every ranking of an unweighted rankability problem (Model (6.1))
corresponds to a binary extreme point of the LP unweighted rankability polytope.

Proof. Since the polytopes of the weighted and unweighted problems (Models
(4.1) and (6.1)) are identical, the proof of Theorem 4.1 can be copied directly for
Theorem 6.1. ]

The corollary below follows from Theorem 6.1.

COROLLARY 6.2. Ewvery optimal ranking of an unweighted rankability problem of
Model (6.1) corresponds to a binary extreme point on the optimal face of the LP
unweighted rankability polytope.

When the LP relaxation of the interior point solver applied to Model (6.1) ter-
minates, there are two options for the optimal objective value k* (integer and non-
integer) and two options for the optimal solution matrix Z* (binary and fractional)
creating the following four outcomes.

0. k* is non-integer and Z* is binary.

1. k* is integer and Z* is binary.

2. k* is integer and Z* is fractional.

3. k* is non-integer and Z* is fractional.

Case 0 is actually not possible and therefore not an outcome because since D
being binary is integer and Z* is binary, then the objective value Y77 | 3", dij 25
must be integer. Case 1 means that p = 1, there is a unique optimal solution, and
the LP solution is optimal for the IP. Case 2 is the most interesting to us and we
will return to it with Theorem 6.3 below to build the set P of all optimal solutions
for Model (6.1). Case 3 means that the LP solution is not optimal for the IP. Our
experiments show that Case 3, though possible, is very unlikely. This is also supported
by Anderson et al. [1] and Reinelt et al. [8, 4].

Theorem 6.3 pertains to Case 2 and gives clues for how to construct all optimal
solutions from the Interior Point solver’s Z* matrix.

THEOREM 6.3. If the Interior Point solver of the LP relaxed unweighted rank-
ability problem of Model (6.1) ends in Case 2 (k* is integer and Z* is fractional),
then

1. k* is the optimal objective value for the integer program,

2. Z* is on the interior of the optimal face (i.e., the convex hull of all optimal
solutions) of the integer program, and

3. fractional entry (i,j) in Z* means that there exists at least one optimal rank-
ing in P with zj; = 1 (thus, i > j) and at least one with z}; = 0 (thus,
i<3j).

Proof. The proof of Theorem 4.3 for weighted data revolved around the integrality
of the weighted Model (4.1)’s objective coefficients ¢;;. Because Theorem 6.3 for
unweighted data uses Model (6.1), which also has integral objective coefficients since
D is binary, the proof for this theorem follows that of Theorem 4.3. 0

As a result, this means that Algorithm 4.1 can also be used for the unweighted
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612 case. That is, when an interior point solver applied to an unweighted rankability

613 problem, Model (6.1), concludes with an integer k* and a fractional optimal solution

614 Z*, the reordered Z*(r,r) can be analyzed to efficiently build P, the set of all optimal

615 rankings. Example 4 below demonstrates Algorithm 4.1 applied to the unweighted

616 data for the 2008 Big East men’s college football season.

617 Example 4. The 2008 season has an integer k* = 6 and the following optimal
fractional Z* matrix shown in Figure 8. The 3 x 3 fractional submatrix creates 3! = 6

starting arrow creates no binary cross
one fixed positions in
1 place

1 4 8 5 6 2 7 3

Z*(r,r) =

0 1 1 1

0 0 67 33 1 1

0 33 0 .67 1 1

0 67 33 0 1 1
1

1
1
1
1
1
1

LW TN U0 = =

0 0 0 O

ending arrow creates
four fixed positions in
last four places

Fic. 8. Algorithm 4.1 can also be applied to unweighted data. The interior point solution
of unweighted Example 4 is a fractional matriz Z*(r,r) with a starting arrow, ending arrow, and
fractional submatriz.

619 subrankings of the items 4, 8, and 5 that are evaluated for optimality. Of these 6, only
620 3 are indeed optimal, meaningp = 3,and P=[18546273],[15486273],[1485627 3|}

621 6.3. Revised Definition for Rankability that uses k, p, and diversity of
622 P. We conclude this section that applies weighted ideas from this paper to unweighted
623 data by presenting one final example: the unweighted data from the 1999 season of
624 the ACC conference of college football. We run the original rankability method of
625 Anderson et al., using the LP relaxation of the alternative formulation of Model (6.1)
626 so that Theorem 6.3 and Algorithm 4.1 apply.

Example 5. The 1999 season has an integer k* = 12 and the following interesting

optimal fractional Z* matrix.

3 1 4 8 2 6 9 ) 7

3 /0 1 1 1 1 1 1 1 1

110 0 36 .73 1 .62 1 1 1

410 64 0 36 1 1 64 1 1

810 28 64 0 .64 .40 1 1 1
Z'(r,r)=210 0 0 36 0 .26 64 1 .64
610 38 0 .10 .74 0 .38 .74 .38

910 0 36 0 36 62 0 .36 1

510 O 0 0 0 26 64 0 .64

7\0 O 0 0 36 62 0 3 O

627 The interior point solution of unweighted Example 5 is a highly fractional matrix
628  Z*(r,r), which usually portends a large p value, yet p is small, namely p = 4. Even
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though the set P contains just 4 optimal rankings, it is very diverse. Items vary
greatly in their rank positions. For instance, item 6 ranges from third place to last
place.

O TN = O 00w
© UL 00N — O k= W
ﬂ@CﬂuOON)HVJkOJ
[\DOJ\I\:-BCQOOP—‘OO

N
-
D
at

Figure 9 compares the P sets of two examples, Example 1 and Example 5. Ex-
ample 1 has 8 rankings in its P set while Example 5 has just 4. The spaghetti plots
show differences in neighboring rankings.”

Example 5
3 3 3 3 110 e
8 4 4 1 1|o % 73 1 62 1 1
4 6 -I 8 1 6 0 30 1 1 (]
6 1 2 9 2z =2 2 3% 0 20 8 1 4
6 38 ) w .7 0 35 .74 38|
1 2 8 4 9 % 0 .36 .62 0 .36
2 8 5 7 0o 0 0 3 0 3% 0
5 5 9 6
9 9 7 2 kK'=12,p" =4
7 7 6 5 % fractional in opt. sol. = .63
avg Kendall rank corr = —.019
Example 1
10 10 10 10 10 10 10 10 0 12 &8 3 2 671141 § 9
12 8 12 8 12 8 12 8 {00360 1 11111 11
8 12 8 12 8 12 8 12 ‘("‘7"::1::::
3 3 2 2 3 3 2 2 2o o w 011111 11
2 2 3 3 2 2 3 3 Xeo-i 0000 o000
o 6 : : 6 6 6 6 ¢]o0 0 00 000001 11
7 7 7 7 7 7 7 7 1o o ) 0 00 0 0[0 5|1
141 141 141 141 nmonoonoom >0 0 0 0 000000 00
4 4 4 4
1 1 1 1 5 5 5 5 k" =255,p"=8
5 5 5 5 1 1 1 1 % fractional in opt. sol. = .04
9 9 9 9 9 9 9 9 avg Kendall rank corr = .74

F1G. 9. Spaghetti plots and summary of diversity of P sets for Examples 1 and 5.

For Example 1, these differences are less dramatic and just between neighboring
items in the rankings, e.g., items 8 and 12 swap as do items 1 and 5, and 2 and
3. The relative positions of items in the rankings appears rather definite. On the
other hand, Example 5 has messier spaghetti plots. Notice also the average Kendall
rank correlation between the two examples. Example 1’s rankings have a high rank

5A complete spaghetti plot would establish lines between all (5) pairs of rankings. Since this is
too messy as it requires 3-D plots, our point is made by using the incomplete 2-D spaghetti plots
shown in Figure 9.
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correlation whereas Example 5’s rankings do not. This numerical indicator of the
diversity of the two P sets corroborates the visual indicator. Example 5 also has a
much higher percentage of fractional entries than Example 1. A high percentage of
fractional entries in the optimal solution matrix can indicate either a large p or a very
diverse P. In either case, the rankability is low.

Example 5 makes the case for a revised definition of rankability. For the current
definitions, for both weighted and unweighted data, rankability r is a function of two
values, k£ and p. Yet perhaps rankability should be a function of three values, k, p,
and the diversity of the set P. This is a direction for future work.

7. Conclusions.
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