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Abstract. In prior work [1], we introduced a new problem, the rankability problem, which refers4
to a dataset’s inherent ability to produce a meaningful ranking of its items. Ranking is a fundamental5
data science task with numerous applications that include web search, data mining, cybersecurity,6
machine learning, and statistical learning theory. Yet little attention has been paid to the question7
of whether a dataset is suitable for ranking. As a result, when a ranking method is applied to an8
unrankable dataset, the resulting ranking may not be reliable. In this technical report, we present9
our preliminary work on extending these methods to weighted data.10

Code: https://github.com/IGARDS/rankability toolbox11

1. Introduction. This research builds on two prior publications, [1] and [3]. We12

summarize the relevant findings from each in the next two sections. In [1], Anderson et13

al. posed the rankability problem as a fundamental yet little studied area of ranking.14

The objective in ranking is to sort objects in a dataset according to some criteria15

whereas the objective in rankability is to assess that dataset’s ability to produce a16

meaningful ranking of its items. The initial rankability paper by Anderson et al. [1]17

used Figure 1 to summarize the relationship between ranking and rankability and to18

argue that a rankability assessment should be made prior to a ranking computation.

Fig. 1. Current Pipeline for Ranking vs. Rankability’s New Pipeline. Ranking problems
follow the pipeline shown in solid lines. In [1], Anderson et al. added a new step, the rankability step
shown in dashed lines, which occurs prior to the computation of a ranking and measures how rankable
the data is. If the data has low rankability, then Anderson et al. identified which additional data
to collect or remove (potential noisy data) in order to improve the rankability. Once the rankability
measure is satisfactory, then a meaningful ranking that can be trusted is produced.

19

Ranking can be formulated as a graph problem, finding the order or rank of20

vertices in a (weighted) directed graph. In this paper, we use data matrices and graphs21

interchangeably.1 Anderson et al. presented a rankability measure for unweighted (or22

∗Department of Computer Science and Software Engineering, California Polytechnic State Uni-
versity, San Luis Obispo, CA, USA (pander14@calpoly.edu).
† Department of Mathematics, College of Charleston, SC 29401, USA (kathryn@behling.org).
‡Department of Mathematics and Computer Science, Davidson College, Davidson, NC

(thcameron@davidson.edu).
§Department of Mathematics and Computer Science, Davidson College, Davidson, NC

(tichartier@davidson.edu).
¶ Department of Mathematics, College of Charleston, SC 29401, USA (langvillea@cofc.edu).
1A square matrix of data can be transformed into a graph and vice versa (e.g., with a weighted

1

This manuscript is for review purposes only.

mailto:pander14@calpoly.edu
mailto:kathryn@behling.org
mailto:thcameron@davidson.edu
mailto:tichartier@davidson.edu
mailto:langvillea@cofc.edu


2P. ANDERSON, K. PEDINGS-BEHLING, T. CAMERON, T. CHARTIER, AND A. LANGVILLE

uniformly weighted) graphs. Ranking and rankability problems for unweighted data23

use binary dominance relations in a matrix D where dij is 1 if a link exists in the24

graph from item i to item j, meaning i > j (i dominates j) and 0, otherwise. A 1 in25

the (i, j) position of the dominance matrix D means that i dominated j by winning26

either a single event or the majority of its multiple events. Applications that create27

wins, losses, or draws yet no differential data create unweighted data. Binary survey28

data (product A is preferred over product B) is an example of unweighted data.29

The purpose of this paper is to extend rankability to weighted graphs. Often30

dominance data carry more than just binary relations. Many sports conclude with a31

margin of victory or a point differential. For the purpose of this paper we will often32

resort to sports terminology (i.e., teams and scores). Despite this language, the reader33

should understand that the work can be extended to other fields. For example, some34

surveys use star ratings (e.g., hotel A has 5 stars while hotel B received only 2 stars).35

In this case, the teams are hotels and the score was 5 to 2. There are many ways to36

create a dominance matrix from such weighted data. A few follow.37

• point differential. If team i beat team j by 5 points, then dij = 5 and dji = 0.38

• point score. If team i beat team j by a score of 50 to 45, then dij = 50 and39

dji = 45.40

• point ratio. If team i beat team j by a score of 50 to 45, then dij = 50/4541

and dji = 45/50.42

If there are multiple matchups between i and j, then average or cumulative values43

may be used.44

2. Summary of Rankability for Unweighted Data. This section summa-
rizes the key ideas from the Anderson et al. rankability measure for unweighted graphs
that, in Section 3, we will adapt to weighted graphs. Anderson et al. begin with the
ideal ranking situation. Consider four items with the following binary matrix D1 of
pairwise dominance relations.

D1 =


1 2 3 4

1 0 1 1 1
2 0 0 1 1
3 0 0 0 1
4 0 0 0 0

.

Suppose the items are teams and each team played every other team exactly once and45

there were no ties in these matchups. Team 1 is in the first rank position because it46

beat every other team, followed by team 2 which beat all teams except the superior47

ranked item 1. Team 3 beat only team 4 and gets the third position and winless48

team 4 fills in last place. It is clear that there is one unquestionable ranking of these49

teams. Anderson et al. call such a matrix perfectly rankable. The matrix D2 is also50

perfectly rankable, which becomes apparent after symmetrically reordering the rows51

and columns according to the ranking of [2 4 3 1].52

adjacency matrix or the normal form of a LOP matrix [4]). A rectangular matrix A of items by
features can be transformed into a bipartite graph and vice versa. And this, if desired, can be
transformed into a square matrix (e.g., AAT ).
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D2 =


1 2 3 4

1 0 0 0 0
2 1 0 1 1
3 1 0 0 0
4 1 0 1 0

 and reordered D2 =


2 4 3 1

2 0 1 1 1
4 0 0 1 1
3 0 0 0 1
1 0 0 0 0

.
In real applications, perfectly rankable data is rare. For example, in the seven-53

teen seasons from 1995-2012 and 24 conferences of NCAA Division 1 college football,54

there was only one perfect season (the 2009 Mountain West conference). In terms55

of rankability, all the other seasons and conferences in college football had imperfect56

data. A goal of the Anderson et al. paper and this paper is to determine a more57

fine-grained status of rankability beyond just the two classes of perfect and imperfect.58

Anderson et al. define rankability as the degree of imperfection of the dominance
matrix, i.e., its distance from the perfectly rankable upper triangular matrix. In par-
ticular, Anderson et al. count k, the number of link changes (additions and removals)
required to make a matrix perfect. For example, the matrix D3 below requires just
k = 1 change to make it into a 4× 4 strictly upper triangular matrix.

D3 =


1 2 3 4

1 0 1 1 1
2 0 0 1 1
3 0 0 0 0
4 0 0 0 0

.
Either add a link from 3 to 4 resulting in the ranking of [1 2 3 4] or add a link
from 4 to 3 resulting in the ranking of [1 2 4 3]. Then Anderson et al. denote
p as the number of rankings that are this distance k from perfection. Thus, for D3,
p = 2. The matrix D4 below is less rankable since it is much farther (k = 5) from
perfect and there are many (precisely p = 6) rankings that with five changes could be
transformed into a perfect dominance graph.

D4 =


1 2 3 4

1 0 0 0 1
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0

.
In summary, the rankability measure of Anderson et al. for unweighted data59

involves two ideas: [1].60

• Distance from perfection. The scalar k is the distance that the input data of61

pairwise dominance relations is from perfectly rankable data. In particular,62

k is the minimum number of edges that must be added or removed from the63

graph to transform it into a perfectly rankable graph.64

• Distance from uniqueness. The scalar p is the number of rankings that are a65

distance k from the given graph. And the set of these rankings is denoted P .66

The rankability measure r of [1] combines k and p to create a rankability score that67

is normalized to have values between 0 (unrankable) and 1 (perfectly rankable). In68

particular, 0 ≤ r = 1 − kp
kmaxpmax

≤ 1, where kmax = (n2 − n)/2 is the maximum69

number of changes that can be made to an n-node graph and pmax = n! is the70

maximum number of rankings of an n-node graph. The larger k and p are, the worse71
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the rankability. Conversely, the smaller k and p are, the better the rankability. At72

their extremes, when k and p achieve their absolute minimums of k = 0 and p = 1,73

the matrix is perfectly rankable.74

The rankability integer program of [1], shown below as Model (2.1), takes as75

input the matrix of binary dominance relations D. The integer program has two76

sets of decision variables, xij and yij , that give information about which links should77

be added or deleted to transform D into a perfect dominance graph. The decision78

variable xij is 1 if a link is added from i to j, and 0, otherwise. The decision variable79

yij is defined similarly for the removal of a link from i to j.80

min
∑
i 6=j

(xij + yij)(2.1)81

(dij + xij − yij) + (dji + xji − yji) = 1 ∀ i < j (anti-symmetry)82

(dij + xij − yij) + (djk + xjk − yjk) + (dki + xki − yki) ≤ 2 ∀ j 6= i, k 6= j, k 6= i (transitivity)83

0 ≤ xij ≤ 1− dij ∀ i, j (only add potential links)84

0 ≤ yij ≤ dij ∀ i, j (only remove existing links)85

xij , yij ∈ {0, 1} ∀ i 6= j (binary)86

87

The anti-symmetry and transitivity constraints force the perturbed matrix D +88

X−Y to be a dominance matrix that can be symmetrically reordered to strictly upper89

triangular form. The ordering of nodes that achieves this upper triangular form is90

the ranking. The optimal objective function value gives k, which is the minimum91

number of perturbations to D (link additions in X and link deletions in Y) required92

to achieve a dominance graph. The number of optimal extreme point solutions to93

this rankability integer program is p and the set of optimal extreme point solutions is94

P . Finding all optimal (extreme point) solutions is known to be a difficult problem95

and thus computing the p part of the rankability measure required some algorithmic96

ingenuity as described in [1].97

3. Hillside Form: The Standard of Perfection for Weighted Data. This98

paper extends Anderson et al.’s two ideas, distance from perfection and distance99

from uniqueness, to weighted data. A distance from perfection for weighted data100

first requires a definition of perfection for weighted data. As shown in the previous101

section, for unweighted data, perfection is defined as a dominance matrix in strictly102

upper triangular form (or a matrix that can be symmetrically reordered to such form).103

Is there an analogous standard of perfection for weighted data? Prior work by Pedings104

et al. [3] provides an answer. Pedings et al. defined a so-called hillside form.105

Definition 3.1. A matrix D is in hillside form if106

dij ≤ dik, ∀ i and ∀ j ≤ k (ascending order across the rows)107

dij ≥ dkj , ∀ j and ∀ i ≤ k. (descending order down the columns)108

The name is suggestive as a 3D cityplot of a matrix in hillside form looks like a sloping
hillside as seen in image on the right of Figure 2. The matrix D5 of weighted data
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below is in hillside form, while D6 is not.

D5 =



1 2 3 4 5

1 0 3 5 8 15
2 0 0 2 4 9
3 0 0 0 3 6
4 0 0 0 0 5
5 0 0 0 0 0

 and D6 =



1 2 3 4 5

1 0 3 5 8 15
2 0 0 2 4 9
3 7 0 0 3 4
4 0 0 0 0 5
5 0 0 0 0 0

.
A matrix in hillside form (or one that can be symmetrically reordered to such form)109

has one unquestionable ranking of its items. For example, matrix D5 says that not110

only is team 1 ranked above teams 2, 3, 4, and 5, but we expect team 1 to beat team111

2 by some margin of victory, then team 3 by an even greater margin, and so on. For112

n× n matrices in hillside form, the ranking of the items is clear: [1 2 · · · n].113

As with unweighted data, it is rare for real applications with weighted data to114

have (or be able to be reordered to have) hillside form. For example, recall the 2009115

Mountain West season, which was perfectly rankable when win-loss binary unweighted116

data were used. When, instead, point differential and thus, weighted data, is used,117

this season is no longer perfectly rankable, i.e., there is no reordering that transforms118

the original data into a hillside matrix. Thus, the next question becomes how to119

define distance from perfection, i.e., distance from hillside form. This paper presents120

two distances, which we call Hillside Count (see Section 4) and Hillside Amount (see121

Section 5).122

4. Hillside Count. The Hillside Count method counts the number of violations123

of the hillside conditions of ascending rows and descending columns and denotes this124

as k, the distance from perfection. A matrix with more violations is farther from125

hillside form and thus less rankable than one with fewer violations. For example, the126

matrix D5 above has 0 violations while D6 has 7 violations. Often a matrix that127

appears to be non-hillside can be symmetrically reordered so that it is in hillside or128

near hillside form. In fact, the non-hillside matrix D7 shown below is the perfect129

hillside matrix D5 when D7 is reordered according to the vector [4 2 5 3 1].130

D7 =



1 2 3 4 5

1 0 0 0 0 0
2 9 0 4 0 2
3 5 0 0 0 0
4 15 3 8 0 5
5 6 0 3 0 0

 and reordered D7 = D5 =



4 2 5 3 1

4 0 3 5 8 15
2 0 0 2 4 9
5 0 0 0 3 6
3 0 0 0 0 5
1 0 0 0 0 0

.
Typically after a data matrix has been reordered to be as close to hillside form131

as possible, violations remain. These violations are of two types: type 1 transitivity132

violations and type 2 transitivity violations. Type 1 violations violate transitivity133

in the ranking and manifest as nonzero entries in the lower triangular part of the134

reordered matrix. In the context of sports, type 1 violations correspond to upsets,135

i.e., when a lower ranked team beat a higher ranked team. On the other hand, type136

2 violations violate the differentials required by hillside form. These violations occur137

in the upper triangular part of the matrix. In the context of sports, type 2 violations138

are weak wins, which occur when a high ranked team beats a low ranked team but139

by a smaller margin of victory than expected. In the hillside method, an upset (i.e.,140
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type 1 violation) typically naturally accounts for more violations than a weak win141

(i.e., type 2 violation) as the example matrix D6 above demonstrates. The 7 in the142

lower triangular part of the D6 matrix accounts for 6 of the 7 violations whereas the143

weak win in the last column accounts for just one violation. It is possible to weight144

these two types of violations in other non-uniform ways if the modeler has a greater145

aversion to one type of violation over the other.146

Finding the hidden hillside structure of a weighted dominance matrix was exactly147

the aim of [3]. The method of Pedings et al. finds a reordering of the items that when148

applied to the item-item matrix of weighted dominance data forms a matrix that is149

as close to hillside form as possible [3]. Figure 2 summarizes the method pictorially.150

The left is a cityplot of an 8 × 8 matrix in its original ordering of items, while the

Fig. 2. Cityplot of 8× 8 data matrix with original ordering and hillside reordering

151

right is a cityplot of the same data displayed with the new optimal hillside ordering.152

Pedings et al. use this hillside form to find a minimum violations ranking of the153

items, the ranking with the minimum k value. In contrast, our goal in this paper is to154

produce a rankability score, rather than a ranking. Like Pedings et al. we use k, but155

we also find another scalar p and we combine these to create a rankability measure156

for weighted data. In particular, we define p, the distance from uniqueness, as the157

number of rankings that, starting from D, are a distance of k violations from hillside158

form.159

Pedings et al. use the integer program of Model (4.1) to get k. Our contribution160

is a method for getting p (see Section 4.1), which is the number of optimal extreme161

point solutions of this integer program.162

min

n∑
i=1

n∑
j=1

cij xij(4.1)163

xij + xji = 1 ∀ i < j (antisymmetry)164

xij + xjk + xki ≤ 2 ∀ j 6= i, k 6= j, k 6= i (transitivity)165

xij ∈ {0, 1} (binary)166

The objective coefficients cij are built from the weighted input matrix D of dom-167

inance relations and are defined as cij := #{ k | dik < djk } + #{ k | dki > dkj },168

where # denotes the cardinality of the corresponding set. Thus, for example, #{ k |169

dik < djk } is the number of teams receiving a lower point differential against team i170

than team j. Similarly, #{ k | dki > dkj } is the number of teams receiving a greater171

point differential against team i than team j.2 For this weighted rankability integer172

program, the scalar k is the optimal objective value and p is the number of optimal173

2The matrix C = [cij ] above counts hillside violations in a binary fashion, however, something
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solutions. In general for linear and integer programs, finding all optimal solutions is174

a difficult problem. Fortunately for our particular problem, we are able to use prop-175

erties of the weighted rankability problem to devise an efficient method in Section 4.1176

for finding the set of all optimal solutions, which we denote by P , and thus, p = |P |.177

Figure 3 below is a pictorial representation of the difference between a more178

rankable (bottom half) and a less rankable (top half) weighted matrix. The top half179

of Figure 3 corresponds to the 2008 Patriot league men’s college basketball season,180

which has rankability values of k = 155 and p = 6. The bottom half corresponds to181

the 2005 season, a much more rankable year with lower rankability values of k = 92182

and p = 4. In each year, the left side shows the weighted dominance matrix D with183

the original ordering and the right side shows an optimal hillside ordering output by184

the weighted rankability integer program of Model (4.1) above. In the top half, the185

less rankable year does not improve much from its original ordering to its optimal186

ordering. For that less rankable 2008 year, the right side, though optimal, is not187

great. Try as the integer program does, the data are just not very close to hillside188

form. Compare this with the more rankable 2005 data in the bottom half of Figure 3,189

a matrix that is much closer to hillside form. In other words, some data are just more190

rankable than others. This paper quantifies exactly how rankable a given weighted191

dataset is.192

Fig. 3. Cityplots of n = 8 college football data matrices with the original ordering (left) and
the optimal hillside reordering (right). The top row is the 2008 season, a less rankable season with
k = 155 and p = 6. The bottom row is the 2005 season, a more rankable season with k = 92 and
p = 4.

4.1. Finding p and P for Hillside Count. Commercial optimization solvers193

have an option to find multiple optimal solutions of a general integer program. The194

more sophisticated can be done. For instance, we can consider weighted violations by summing
the difference each time a hillside violation occurs. In this case, the entries of C are defined as
cij :=

∑
k:dik<djk

(djk − dik) +
∑

k:dki>dkj
(dki − dkj).
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user can control a parameter that tells the solver how hard to look for multiple optimal195

solutions. However, the user does not know if the solver has found all or just some196

optimal solutions.197

With default settings, solvers applied to the rankability integer program conclude198

with the optimal objective value k and one solution matrix X from which an optimal199

ranking can be built. However, most commercial solvers (e.g., Gurobi) have an option200

to output any other optimal solutions found along the way. When this option (e.g., in201

Gurobi, use the PoolSearch option) is set, upon termination, the rankability integer202

program outputs k and several X matrices, each of which corresponds to an optimal203

ranking, and hence, a member of P . We call this set of rankings partial P since we204

cannot be sure if it is the full set P , the set of all optimal rankings, that we desire. We205

propose the following procedure in order to determine (1) if this partial P is indeed206

complete and hence the full set P and (2) if this partial P is incomplete, find the207

remaining members of P to complete the set P .208

Our contribution is a method that is guaranteed to find all optimal solutions of a209

weighted rankability problem. This method is much more efficient than the elimina-210

tive procedure that Anderson et al. develop for unweighted rankability problems [1].211

Rather than eliminating the many branches of an n! tree of rankings, this procedure212

instead accumulates optimal solutions by examining a tiny subset of full rankings from213

the n! tree of rankings. In particular, this accumulative procedure examines locations214

of fractional elements in the X matrix of the linear programming (LP) relaxation of215

the weighted rankability model that is solved by an interior point, not an exterior216

point simplex, method. This last sentence generates two questions; Why an interior217

point solver? And why the LP relaxation?218

First, we explain the interior point solver. For general linear programs, when219

multiple optimal solutions exist, i.e., when the feasible region has an optimal face220

rather than one optimal point, interior and exterior point solvers both end with an221

optimal solution. However, the difference lies in the location of this optimal solution.222

The exterior point solution is an extreme point on the optimal face whereas the223

interior point solution lies in the interior of the optimal face (and on or near the224

centroid if Mehrotra and Ye’s [5] interior point method is used). For our work, we225

prefer the optimal solution that is in the interior of the optimal face because it is a226

convex combination of all optimal extreme point solutions. Theorem 4.1 below shows227

that these optimal extreme points on the optimal face are the optimal rankings of the228

weighted rankability problem.229

In other words, the interior point solution can be considered a summary of all230

optimal rankings. This is important as it enables us to work backwards, in Algo-231

rithm 4.1 described later, from this summary solution to deduce all optimal rankings232

on the optimal face, and, hence, form the full set P .233

Next, we explain why we use the LP relaxation. Interior point methods are234

designed for linear programs, not integer programs, so we solve the LP relaxation235

of the rankability problem. The LP weighted rankability polytope for the weighted236

rankability problem is defined as the anti-symmetry constraints xij + xji = 1), the237

transitivity constraints (xij +xjk +xki ≤ 2), and the bound constraints (0 ≤ xij ≤ 1).238

Notice that the bound constraints are simply a relaxation of the binary constraints of239

the original integer program, and hence the name, LP relaxation. We compare the LP240

rankability polytope with the IP rankability polytope, which we define as the convex241

hull of all feasible solutions of the integer program of Model (4.1). Even though these242

two polytopes do not always define the same region useful results regarding the IP243

rankability polytope can be gathered, as Theorem 4.1 shows, from the LP rankability244
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polytope, i.e., the relaxed version of the problem.245

Theorem 4.1. Every ranking of a weighted rankability problem corresponds to a246

binary extreme point of the LP weighted rankability polytope.247

Proof. Every ranking r has a corresponding binary strictly upper triangular ma-248

trix X(r, r) which denotes X after it has been symmetrically reordered according to249

r. The matrix X is binary and clearly feasible since anti-symmetry and transitivity250

are easy to verify from the upper triangular form of X(r, r). It remains to show that251

X is an extreme point, i.e., that X cannot be written as a convex combination of252

other extreme points. We do this by contradiction. Suppose that there exists a scalar253

0 < α < 1 and, without loss of generality, exactly two binary feasible matrices Y 6= Z254

such that X = αY + (1 − α)Z. Since Y 6= Z, there exists at least one element,255

say (i, j) such that yij 6= zij . Suppose, without loss of generality, that yij = 1 and256

zij = 0. Then xij = αyij + (1 − α)zij = α, which means that X is fractional, which257

contradicts the statement that X is binary. Therefore, the assumption that X is a258

convex combination of Y and Z is false and rather it is that X is an extreme point.259

The corollary below follows from Theorem 4.1.260

Corollary 4.2. Every optimal ranking of a weighted rankability problem of Model261

(4.1) corresponds to a binary extreme point on the optimal face of the LP weighted262

rankability polytope.263

When the LP relaxation of the interior point solver terminates, there are two264

options for the optimal objective value k∗ (integer and non-integer) and two options265

for the optimal solution matrix X∗ (binary and fractional3) creating the following266

four outcomes.267

0. k∗ is non-integer and X∗ is binary.268

1. k∗ is integer and X∗ is binary.269

2. k∗ is integer and X∗ is fractional.270

3. k∗ is non-integer and X∗ is fractional.271

Case 0 is actually not possible and therefore not an outcome because since C being272

a sum of counts is integer and X∗ is binary, then the objective value
∑n

i=1

∑n
j=1 cij x

∗
ij273

must be integer. Case 1 means that p = 1, there is a unique optimal solution, and274

the LP solution is optimal for the IP. Case 2 is the most interesting to us and we will275

return to it with Theorem 4.3 below to build the set P of all optimal solutions. Case276

3 means that the LP solution is not optimal for the IP. Our experiments show that277

Case 3, though possible, is very unlikely. This is also supported by Anderson et al.278

[1] and Reinelt et al. [8, 4].279

Theorem 4.3 pertains to Case 2 and gives clues for how to construct all optimal280

solutions from the Interior Point solver’s X∗ matrix.281

Theorem 4.3. If the Interior Point solver of the LP relaxed weighted rankability282

problem of Model (4.1) ends in Case 2 (k∗ is integer and X∗ is fractional), then283

1. k∗ is the optimal objective value for the integer program,284

2. X∗ is on the interior of the optimal face (i.e., the convex hull of all optimal285

solutions) of the integer program, and286

3. fractional entry (i, j) in X∗ means that there exists at least one optimal rank-287

ing in P with x∗ij = 1 (thus, i > j) and at least one with x∗ij = 0 (thus,288

i < j).289

3If X∗ contains at least one fractional value, we say it is fractional.
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Proof. (1) (By Contradiction.) Assume otherwise. That is, assume k∗, the opti-290

mal objective value of the linear program, is not the optimal objective value of the291

integer program. Then k∗ is suboptimal for the integer program and the integer pro-292

gram’s optimal objective value must be an integer superior to k∗ such as k∗−1, k∗−2,293

. . .. However, this is impossible because the linear program, being a relaxation to the294

integer program, must have an objective value equal to or superior to the objective295

value of the integer program. In other words, the only possible superior objective296

value for the linear program is a non-integer value yet this contradicts the fact that297

we are in Case 2 with an integer objective value.298

(2) We show (2) by proving that the extreme points of the convex hull of the299

optimal face of the integer program are the extreme points of the optimal face of the300

linear program. Because the linear program is a relaxation, its optimal face is either:301

(a) equal to or (b) larger than the optimal face of the integer program. We will show302

that option (b) is not possible and thus the optimal face of the linear program is the303

optimal face of the integer program. Suppose the linear program’s optimal face is304

larger than the integer program’s optimal face, then the linear program’s optimal face305

must contain at least one fractional extreme point. (Any additional extreme point’s306

on the linear program’s optimal face but not on the integer program’s optimal face307

cannot be binary, otherwise they would already be on the integer program’s optimal308

face.) Yet a fractional extreme point on the linear program’s optimal face would have309

a non-integer objective value since the weighted sum of integer cij with fractional xij310

must be non-integer. This contradicts the fact that for Case 2, the optimal objective311

value k∗ is integer. Thus, option (b) is not possible. The only possibility then is312

option (a): the linear program’s optimal face is the integer program’s optimal face.313

Hence, the X∗ in the interior of the linear program’s optimal face is in the interior of314

the integer program’s optimal face.315

(3) By (2) above, we know that X∗ is in the interior of the optimal face of the
integer program, which means that X∗ is a convex combination of the p binary optimal
extreme points of the integer program, each of which, by Theorem 4.1, corresponds
to a ranking h denoted by the binary matrix Xh. Thus,

X∗ = α1X
1 + α2X

2 + . . .+ αpX
p,

where 0 < αi < 1,
∑p

i=1 αi = 1, and Xh is the binary matrix corresponding to optimal316

ranking h. If the (i, j) entry of X∗, x∗ij , is 1, then all rankings in P agree that i > j317

because x∗ij can only be 1 if all xhij = 1.318

x∗ij = α1x
1
ij + α2x

2
ij + . . .+ αpx

p
ij319

= α1(1) + α2(1) + . . .+ αp(1)320

= α1 + α2 + . . .+ αp321

= 1.322

Similarly, at the other extreme, the only way that x∗ij = 0 is if all rankings in P agree323

that i < j, i.e., xhij = 0 for all h. The remaining option for x∗ij is a fractional value,324

which can happen only if some xhij = 1 (meaning i > j) and some xhij = 0 (meaning325

i < j). Thus, a fractional value in the (i, j) entry of X∗ represents disagreement326

among the members of P about the pairwise ranking of items i and j.327

Theorem 4.3 also means that while the values in fractional entries may not be328

exact (since the interior point method is not guarantee to converge to the exact329
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centroid), the location of fractional entries is exact. Thus, Theorem 4.3 inspires330

Algorithm 4.1, a way to construct all optimal rankings in P .331

Algorithm 4.1 Finding P from the fractional interior point solution of LP relaxed
Model (4.1).

Input: fractional X∗, k∗

1. Find r, the indices after sorting the row sums of X∗ in descending order.4

2. Create X∗(r, r) by symmetrically reordering X∗ by r.
3. Identify fixed positions in the ranking by locating any so-called starting

arrows, ending arrows, and binary crosses in X∗(r, r).
4. The remaining positions are non-fixed, varying positions, that corre-

spond to fractional submatrices in X∗(r, r).
5. For each fractional submatrix, create a list of alternative subrankings for

these rank positions by letting each fractional element (i, j) take its two
extreme values of 0 and 1, meaning i < j and i > j.

6. Assemble the fixed subrankings and alternative fractional subrankings into
full rankings in all possible ways.

7. Evaluate each full ranking from Step 6 for optimality. All optimal rankings
create the set P .

Output: P

When X∗, the interior point solution of LP relaxation of Model (4.1), is binary,332

r is an optimal ranking, i.e., a member of P . Thus, in Step 1 of Algorithm 4.1 when333

X∗ is fractional, r may or may not be in P . Nevertheless, this reordering is helpful.334

For Step 2, if X∗ is binary, then X∗(r, r) is a strictly upper triangular matrix. Since335

we are in Case 2 and X∗ is fractional, X∗(r, r) is a nearly strictly upper triangular336

matrix with deviations from the upper triangular structure that are noticeable and337

helpful as shown in Step 3. Examples 1-3 on the subsequent pages contain each338

of the three “fixed position” structures (starting arrows, ending arrows, and binary339

crosses) of X∗(r, r). A binary cross is a band of rows and columns that contain340

entirely binary elements. For Step 4, a submatrix is called fractional if there exist341

any fractional elements. Thus, a fractional submatrix can contain both binary and342

fractional elements. Suppose Step 4 locates a 8 × 8 fractional submatrix. Then in343

Step 5, there are 8! subrankings of these 8 items in the corresponding 8 rank positions.344

Yet for Step 5, often many fewer than 8! subrankings need to be created since the345

8 × 8 fractional submatrix typically also has many binary dominance relations that346

also must be satisfied and this, fortunately, greatly reduces the list of alternative347

subrankings that are possible. For Step 5, it is also helpful to identify fractional348

crosses in the fractional submatrix. A fractional cross is a roving item that can349

range over all rank positions in the subranking.350

The three examples on the subsequent pages demonstrate the accumulative pro-351

cedure for finding all optimal solutions for a weighted rankability problem. All three352

examples are from the Big 12 conference of college football. For each example, we353

display the optimal solution matrix X∗ output by the Interior Point solver of the354

linear programming relaxation of the weighted rankability problem. In all three ex-355

amples, the X∗ matrix is fractional, so we can apply ideas from Theorem 4.3 and356

Algorithm 4.1 to build the set P of all optimal solutions.357

Example 1. The 2005 season has the optimal fractional X∗ matrix shown in358

Figure 4.359

This manuscript is for review purposes only.



12P. ANDERSON, K. PEDINGS-BEHLING, T. CAMERON, T. CHARTIER, AND A. LANGVILLE

Fig. 4. The interior point solution of Example 1 is a fractional matrix X∗(r, r) with a starting
arrow, ending arrow, and binary cross.

The first row and column are binary, creating a starting arrow. This means that
the first item, item 10, belongs in the first rank position. There are no other candidates
for this position. Similarly, there is an ending arrow in the last rank position so item
9 belongs in the final position. In addition, there is another binary structure in the
matrix; notice the binary cross near the center of the matrix, covering the bands
corresponding to the rows and columns for items 6, 7, 11, and 4. This means that
these items must appear in the sixth through ninth rank positions in that order. The
remaining rank positions in X∗(r, r) contain fractional values, which, from Theorem
4.3, we know represent alternatives for the corresponding rank positions. For example,
in the second and third rank positions, items can be ordered either 8 then 12 or 12
then 8. In the fourth and fifth rank positions items 3 and 2 can be ordered in any of
the 2! ways. Finally, the same thing happens in the tenth and eleventh rank positions
with items 1 and 5. This creates a set of 2×2×2 = 8 rankings that must be evaluated
for their optimality. In this case, all 8 rankings shown below built from X∗(r, r) are
indeed optimal with a objective value of k∗ = 255. Thus,

P =





10
12
8
3
2
6
7
11
4
1
5
9



,



10
8
12
3
2
6
7
11
4
1
5
9



,



10
12
8
2
3
6
7
11
4
1
5
9



,



10
8
12
2
3
6
7
11
4
1
5
9



,



10
12
8
3
2
6
7
11
4
5
1
9



,



10
8
12
3
2
6
7
11
4
5
1
9



,



10
12
8
2
3
6
7
11
4
5
1
9



,



10
8
12
2
3
6
7
11
4
5
1
9





.
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Example 2. The 2010 season has the optimal fractional X∗ matrix shown in360

Figure 5.361

Fig. 5. The interior point solution of Example 2 is a fractional matrix X∗(r, r) with a starting
arrow, ending arrow, and binary cross.

Example 2 has a starting arrow that covers one rank position, an ending arrow362

that covers one rank position, and a binary cross that covers four more rank posi-363

tions. So, in total, 6 of the 12 rank positions are fixed. The remaining six rank364

positions have fractional values that leave room for alternative subrankings in these365

rank positions. In particular, the second and third rank positions can be filled with366

8 then 11 or 11 then 8, while the eighth through eleventh rank positions can be filled367

in various ways with the four corresponding items of 3, 12, 10, and 2. In the eighth368

through eleventh rank positions, we could, of course, consider the 4!=24 ways of ar-369

ranging these four items. However, due to the binary values in this 4 × 4 submatrix370

of X∗(r, r), there are actually many fewer subrankings that need to be considered.371

In fact, a tree can be built with just 5 subrankings of these four items (namely,372

[3 12 10 2], [3 10 12 2], [3 12 2 10], [12 3 10 2], [12 3 2 10]). This creates a total of373

2 × 5 = 10 full rankings that need to be evaluated for their optimality. After eval-374

uation, 6 of these 10 rankings are optimal with an objective value of k∗ = 256 and375

p∗ = 6.376

Example 3. The 2004 season has the optimal fractional X∗ matrix shown in377

Figure 6.378

Example 3 has a starting arrow that covers three rank positions and an ending379

arrow that covers two rank positions. So, in total, 5 of the 12 rank positions are fixed.380

The remaining seven positions have fractional values that can be used to create the381

alternative rankings that will be evaluated to see if they belong in P . The fourth and382

fifth rank positions can be filled as either 12 then 9 or 9 then 12. Then the sixth383

through tenth rank positions corresponding to the 5× 5 fractional submatrix creates384

a fractional cross that can be used to reduce the number of 5! = 120 subrankings385

that need to be considered. This fractional cross means that the corresponding item,386
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Fig. 6. The interior point solution of Example 3 is a fractional matrix X∗(r, r) with a starting
arrow, an ending arrow, and two isolated, though neighboring, fractional submatrices. The 5 ×
5 fractional submatrix has a roving item, item 6, that can range over all rank positions in this
subranking.

item 6, is a roving item and can appear in all five rank positions in this subranking.387

Otherwise, the remaining elements in this 5 × 5 submatrix are binary, meaning that388

these items must appear in the given order of 3, 2, 7, 4 with 6 inserted in the five389

slots between these four items. Thus, there are only 5 subrankings ([6 3 2 7 4], [3 6390

2 7 4], [3 2 6 7 4], [3 2 7 6 4], [3 2 7 4 6]) that need to be paired with the 2 other391

subrankings to create 10 full rankings that must be evaluated for optimality. After392

evaluation, all 10 of these 10 rankings are indeed optimal with an objective value of393

k∗ = 254 and p = 10.394

4.2. Lowerbound on p. In this section, we provide a lowerbound and thus,395

estimate, on p, the number of rankings in the set P of all optimal rankings. This396

bound may be helpful for a large example that has a complicated highly fractional397

X∗ matrix, which, in turn, makes it difficult to assemble rankings to evaluate in398

accumulative Algorithm 4.1.399

Theorem 4.4. If X∗ is the exact centroid of all optimal rankings for a weighted
rankability problem, then

p ≥
⌈

1

m

⌉
,

where m is the smallest fractional element in X∗.400

Proof. Assume it is the (i, j) entry of X∗ that holds the smallest fractional value
m. The only way this entry can have a nonzero value is if at least one of the p binary
optimal rankings Xh for h = 1, 2, . . . , n has i > j, which means there exists at least
one xhij = 1 for h = 1, 2, . . . , n. Suppose that exactly one of the optimal rankings,

say X1, has i > j so that x1ij = 1. X∗ is the centroid of all binary optimal rankings

X1,X2, . . . ,Xp and can be written as the following convex combination

X∗ =
1

p
X1 +

1

p
X2 + · · ·+ 1

p
Xp.
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Thus, m = x∗ij = 1
p (1) = 1

p and p = 1
m . Now suppose exactly two of the p binary401

optimal rankings have i > j, then m = x∗ij = 1
p (1) + 1

p (1) = 2
p and p = 2

m > 1
m .402

Continuing in this fashion, it follows that p ≥ 1
m , regardless of the number of binary403

optimal rankings that contribute to the fractional m. Since p is an integer, 1
m can be404

rounded up to the nearest integer.405

The previous section and Theorem 4.3 recommended solving the weighted rank-406

ability integer program with an LP relaxation solved by an Interior Point method.407

When the solver concludes in Case 2 (k∗ integer, X∗ fractional), then Theorem 4.3408

showed that X∗ is a convex combination of all optimal rankings. And when an Inte-409

rior Point solver such as Mehrotra and Ye [5] is used, X∗ is likely near the centroid.410

While this is not the exact centroid required by the hypothesis of Theorem 4.4, it is411

close enough to give an estimate of a lowerbound. In Table 1, we apply lowerbounding412

Theorem 4.4 to the three examples of the previous section.413

Table 1
Applying the lowerbound on p.

m
⌈

1
m

⌉
p

Example 1 (Big 12 season 2005) .47 3 8
Example 2 (Big 12 season 2010) .30 3 6
Example 3 (Big 12 season 2004) .33 4 10

Corollary 4.5. If X∗ is the exact centroid of all optimal rankings for a weighted414

rankability problem, then fractional entry (i, j) is the percentage of rankings in P that415

have i > j.416

For Case 2, interior point methods conclude near the exact centroid and thus417

a fractional entry in the optimal solution is an approximation to the percentage of418

rankings in P that have i > j.419

5. Hillside Amount. Our second method for producing a weighted rankability420

measure is called the Hillside Amount method. Like the Hillside Count method,421

Hillside Amount uses hillside form as the definition of perfection. However, Hillside422

Amount uses a different way of calculating the distance from perfection, k. The423

Hillside Amount method solves the integer program below to find X and Y matrices424

that when respectively added to and subtracted from D transform D + X −Y into425

hillside form with the least amount of changes, hence the name Hillside Amount.426

The optimal objective value is k, the distance from perfection, and the number of427

alternative optimal rankings is p, the distance from uniqueness. The set of all optimal428

rankings is P . The binary Z matrix is a LOP (linear ordering problem) matrix that429

can be reordered to a strictly upper triangular matrix. Any reordering that does this430

is an optimal ranking.431
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min
∑
i

∑
j

(xij + yij)(5.1)432

(dij + xij − yij) ≤Mzij ∀ i 6= j (if zij=0, i.e., j>i, then dij+xij−yij=0)433

(djk + xjk − yjk)− (dik + xik − yik) ≤Mzji ∀ j 6= i, k 6= j, k 6= i (hillside rows)434

(dki + xki − yki)− (dkj + xkj − ykj) ≤Mzji ∀ j 6= i, k 6= j, k 6= i (hillside cols)435

zij + zji = 1 ∀ i < j (LOP anti-symmetry)436

zij + zjk + zki ≤ 2 ∀ j 6= i, k 6= j, k 6= i (LOP transitivity)437

0 ≤ xij ≤M − dij ∀ i 6= j (lb, ub)438

0 ≤ yij ≤ dij ∀ i 6= j (lb, ub)439

zij ∈ {0, 1} ∀ i 6= j (binary)440

441

Comparing Model (5.1) with Model (2.1) reveals that the Hillside Amount method442

is a direct extension of the Anderson et al. method for unweighted graphs to weighted443

graphs. Figure 7 demonstrates the Hillside Amount method by comparing two weighted444

datasets, the 2000 and 2016 seasons from the mid-American conference of college foot-445

ball.446

Fig. 7. Cityplots of two weighted matrices with the original ordering (left), the optimal hillside
amount reordering (center), and the additions and deletions required to bring the matrix to hillside
form (right). The top row is the 2000 season, a less rankable season with a Hillside Amount k = 604.
The bottom row is the 2016 season, a more rankable season with k = 361.

The top half of Figure 7 corresponds to the 2000 season, which has a Hillside447

Amount rankability value of k = 604. The bottom half corresponds to the 2016448

season, a much more rankable year with a better lower rankability value of k = 361.449

In each year, the left side shows the weighted dominance matrix D with the original450

ordering and the center image is the matrix reordered according to the optimal hillside451

amount ordering output by the weighted rankability integer program of Model (5.1)452
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above. The image on the right shows the amount of additions (i.e., X) and deletions453

(i.e., Y) that were required to transform the matrix into a hillside matrix. The454

rightmost images show that many more changes must be made to the 2000 season455

than to the 2016 season (k = 604 vs. k = 361, to be precise). Thus, according to456

the Hillside Amount method, the 2016 season is much more rankable than the 2000457

season. In summary, Hillside Amount provides another method besides Hillside Count458

to quantify just how much more rankable one weighted dataset is than another.459

5.1. Finding p and P for Hillside Amount. In addition to k, we also need460

p and P , the other main piece of the rankability measure. Unfortunately, unlike461

the Hillside Count method, the LP relaxation of the Hillside Amount integer program462

does not provide anything meaningful. This is because the zij variables of Model (5.1)463

must be binary in order for the if-then structure of the first three sets of constraints464

to work. Thus, we must find the set P in another manner. We adapt a method465

from Anderson et al. [1] to fit this Hillside Amount work. In particular, we build466

a tree that we prune to avoid considering all n! rankings until we are guaranteed467

to find all optimal rankings in the set P . The pruning method works as follows.468

First solve Model (5.1), finding the optimal objective value k∗. Then build a tree469

of rankings by considering subrankings either sequentially or in parallel. Prune all470

branches emanating from a subranking whose corresponding submatrix of D has a sum471

of lower triangular elements greater than k∗. For example, if subranking s = [1 4 6 2]472

and D(s, s) =


1 4 6 2

1 0 0 11 8
4 0 0 9 6
6 7 0 0 7
2 0 0 3 0

, then the sum of elements in the lower triangle of473

D(s, s) is 10. Thus, if step 1 found the optimal objective value k∗ less than 10, then474

any ranking beginning with (or consisting of) subranking s can be eliminated since it475

cannot be optimal. Clearly, this algorithm is more efficient when branches are pruned476

closer to the root node of the tree.477

6. Revisiting the Unweighted Problem. Anderson et al. designed rankabil-478

ity methods for unweighted graphs [1]. In the next three subsections, we show three479

ideas from this paper on weighted data that can be applied to unweighted data.480

6.1. Hillside Count for unweighted data. We designed the Hillside Count481

method of Section 4 for weighted matrices, yet it can also be used for unweighted482

matrices. Thus, Hillside Count provides an alternative to the method of Anderson483

et al. for unweighted graphs [1]. The two methods differ in their definition of k, the484

distance from perfection. The method of Anderson et al. defines k as the number485

of link additions and deletions required to transform the dominance matrix D into486

a reordering of strictly upper triangular form, whereas the Hillside Count method487

defines k as the number of violations of the hillside constraints regarding ascending488

rows and descending columns. For unweighted data, Hillside Count finds a reordering489

that transforms the dominance matrix D into a form that is as close to strictly upper490

triangular form as possible and then counts hillside violations from this as k. So the491

two methods, Anderson et al. and Hillside Count, are related. In order to understand492

the differences, we applied both methods to the unweighted data of the 2000-2012493

seasons of the Big East conference of NCAA college football. Table 2 shows that494

these two rankability methods are correlated.495

But do we really need another method for unweighted data? What is to be gained496
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Table 2
Comparing rankability methods for unweighted data: Anderson et al. [1] vs. Hillside Count for

2000-2012 seasons of the Big East conference of college football.

Anderson k, p Hillside Count k, p
2000 4,1 28, 4
2001 2, 1 10, 4
2002 2, 1 10, 4
2003 4,1 22, 4
2004 6, 1 40, 48
2005 4, 1 25, 12
2006 8, 4 36, 8
2007 12, 7 72, 24
2008 6, 3 32, 12
2009 4, 1 28, 24
2010 8, 3 60, 12
2011 8, 3 52, 24
2012 8, 1 52, 48

by using the Hillside Count method for unweighted data? The 2000 and 2003 seasons497

show the value of the Hillside Count method. These two years have the same Anderson498

et al. rankability values (k = 4 and p = 1), yet the Hillside Count values differ (k = 28499

and p = 4 for year 2000 and k = 22 and p = 4 for 2003). How is the Hillside Count500

method differentiating between these two years? Compare the 2000 and 2003 D(r, r)501

matrices below, which are dominance matrices symmetrically reordered according to502

optimal ranking r given by the Hillside Count method.503

D2000(r, r) =



7 2 1 5 8 3 6 4

7 0 1 1 1 1 1 1 1

2 0 0 1 1 1 1 1 1

1 0 0 0 1 1 1 0 1

5 0 0 0 0 1 1 1 0

8 0 0 0 0 0 1 1 1

3 0 0 0 0 0 0 1 1

6 0 0 1 0 0 0 0 1

4 0 0 0 1 0 0 0 0



and D2003(r, r) =



8 2 3 7 1 4 5 6

8 0 0 1 1 1 1 1 1

2 1 0 1 0 1 1 1 1

3 0 0 0 1 1 1 1 1

7 0 1 0 0 0 1 1 1

1 0 0 0 1 0 1 0 1

4 0 0 0 0 0 0 1 1

5 0 0 0 0 1 0 0 1

6 0 0 0 0 0 0 0 0



.

The entries contributing to hillside violations are highlighted in red. Year 2000 has504

just two nonzeroes in its lower triangular, while year 2003 has four. Yet though year505

2000 has fewer nonzeroes in the lower triangle than year 2003, it has more hillside506

violations, resulting in a slightly worse rankability score for k (28 vs. 22). This occurs507

because nonzeroes farther from the diagonal contribute more hillside violations than508

nonzeroes closer to the diagonal. In other words, big upsets (i.e., type 1 violations509

in the lower triangular that are far from the diagonal) naturally cost more than mild510

upsets (i.e., type 1 violations in the lower triangular that are near the diagonal). In511

this example, the Hillside Count method has determined that year 2000’s two big512

upsets (the penultimate team beating the third place team and the last place team513

beating the fourth place team) are worse than year 2003’s four mild upsets between514

neighboring teams (2nd place over 1st place, 4th over 2nd, 5th over 4th, and 7th over515

5th). Thus, the Hillside Count method is preferred over the method of Anderson et516

al. when the built-in accounting of rank violations by the severity of the violation is517
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important.518

For unweighted data, another advantage of the Hillside Count method over the519

method of Anderson et al. is the simplicity, elegance, and history of the Hillside520

Count’s model formulation in Model (4.1). Hillside Count’s Model (4.1) is cleaner than521

Anderson et al.’s Model (2.1). As mentioned earlier, the constraints of Hillside Count’s522

Model (4.1) are the classic and famous linear ordering problem (LOP) polytope. The523

linear ordering problem starts with information on pairwise relationships between524

items and creates a linear ordering of the items that is most consistent with the525

data. For this reason, ranking is also referred to as the linear ordering problem.526

The 2011 book by Reinelt and Marti [4] surveyed the state of the art for the LOP.527

These authors describe the best approximate and exact algorithms for solving the528

LOP. Many heuristic methods and nearly all exact methods revolve around the so-529

called canonical LOP integer program and its linear programming relaxation. The530

constraints of the LOP create the LOP polytope [9, 8] and much progress has been531

built around the theory related to this polytope, e.g., creating valid inequalities and532

cutting planes [2, 6, 7, 8]. In summary, because Hillside Count Model (4.1) is an533

optimization problem over the LOP polytope, some LOP algorithms may be able to534

be tailored to solve large instances of rankability problems. This is a direction for535

future work.536

UPDATE WITH ALLOPT for LOP references.537

6.2. Revised Method to find p and P for Anderson et al. A second rank-538

ability idea from this paper on weighted data that can be applied to unweighted data539

concerns the p half of the two rankability pieces k and p. As a result of Section 6.1,540

we now have two choices for rankability methods for unweighted data: the original541

Anderson et al. method and the Hillside Count method. As mentioned in the previous542

section, these two methods measure slightly different aspects of rankability. Suppose543

that a practitioner has some modeling reasons for preferring the method of Anderson544

et al. for her unweighted application. The most expensive part of the Anderson et545

al. rankability measure is the pruning tree for finding p. In this section, we replace546

that pruning tree with the more efficient accumulative method of Algorithm 4.1 for547

finding p and P . In order to do this, we must replace the original Anderson et al.548

Model (2.1) with the alternative model, Model (6.1) shown below and first presented549

in [1].550

max
∑
i 6=j

dijzij(6.1)551

zij + zji = 1 ∀ i < j (anti-symmetry)552

zij + zjk + zki ≤ 2 ∀ j 6= i, k 6= j, k 6= i (transitivity)553

zij ∈ {0, 1} ∀ i 6= j (binary)554

555

The constraints of this alternative formulation, which is now a maximization,556

encompass those of the original Anderson et al.’s Model (2.1) and are arrived at557

with the simple substitution zij = dij + xij − yij . The following rules are used558

to translate the solution from this alternative formulation into the solution for the559

original formulation. If zij = 0 and dij = 1, then set yij = 1. If zij = 1 and dij = 0,560

then set xij = 1. Then k is the number of nonzeros in X plus the number of nonzeros561

in Y, i.e., k = nnz(X) + nnz(Y).562

Notice that the constraints of the LP-relaxed version of this alternative Model563

(6.1) are exactly the same classic LOP constraints that form the LOP polytope [8] and,564
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thus, are exactly the same constraints and polytope for the Hillside Count Model (4.1).565

In other words, the LP LOP polytope, the LP weighted rankability polytope, and the566

LP unweighted rankability polytope are identical. Only the objective functions differ.567

This means that theorems similar to those of Section 4.1 for weighted rankability568

Model (4.1) can be proven for this unweighted rankability Model (6.1) above. Namely,569

we have the following results.570

Theorem 6.1. Every ranking of an unweighted rankability problem (Model (6.1))571

corresponds to a binary extreme point of the LP unweighted rankability polytope.572

Proof. Since the polytopes of the weighted and unweighted problems (Models573

(4.1) and (6.1)) are identical, the proof of Theorem 4.1 can be copied directly for574

Theorem 6.1.575

The corollary below follows from Theorem 6.1.576

Corollary 6.2. Every optimal ranking of an unweighted rankability problem of577

Model (6.1) corresponds to a binary extreme point on the optimal face of the LP578

unweighted rankability polytope.579

When the LP relaxation of the interior point solver applied to Model (6.1) ter-580

minates, there are two options for the optimal objective value k∗ (integer and non-581

integer) and two options for the optimal solution matrix Z∗ (binary and fractional)582

creating the following four outcomes.583

0. k∗ is non-integer and Z∗ is binary.584

1. k∗ is integer and Z∗ is binary.585

2. k∗ is integer and Z∗ is fractional.586

3. k∗ is non-integer and Z∗ is fractional.587

Case 0 is actually not possible and therefore not an outcome because since D588

being binary is integer and Z∗ is binary, then the objective value
∑n

i=1

∑n
j=1 dij z

∗
ij589

must be integer. Case 1 means that p = 1, there is a unique optimal solution, and590

the LP solution is optimal for the IP. Case 2 is the most interesting to us and we591

will return to it with Theorem 6.3 below to build the set P of all optimal solutions592

for Model (6.1). Case 3 means that the LP solution is not optimal for the IP. Our593

experiments show that Case 3, though possible, is very unlikely. This is also supported594

by Anderson et al. [1] and Reinelt et al. [8, 4].595

Theorem 6.3 pertains to Case 2 and gives clues for how to construct all optimal596

solutions from the Interior Point solver’s Z∗ matrix.597

Theorem 6.3. If the Interior Point solver of the LP relaxed unweighted rank-598

ability problem of Model (6.1) ends in Case 2 (k∗ is integer and Z∗ is fractional),599

then600

1. k∗ is the optimal objective value for the integer program,601

2. Z∗ is on the interior of the optimal face (i.e., the convex hull of all optimal602

solutions) of the integer program, and603

3. fractional entry (i, j) in Z∗ means that there exists at least one optimal rank-604

ing in P with z∗ij = 1 (thus, i > j) and at least one with z∗ij = 0 (thus,605

i < j).606

Proof. The proof of Theorem 4.3 for weighted data revolved around the integrality607

of the weighted Model (4.1)’s objective coefficients cij . Because Theorem 6.3 for608

unweighted data uses Model (6.1), which also has integral objective coefficients since609

D is binary, the proof for this theorem follows that of Theorem 4.3.610

As a result, this means that Algorithm 4.1 can also be used for the unweighted611
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case. That is, when an interior point solver applied to an unweighted rankability612

problem, Model (6.1), concludes with an integer k∗ and a fractional optimal solution613

Z∗, the reordered Z∗(r, r) can be analyzed to efficiently build P , the set of all optimal614

rankings. Example 4 below demonstrates Algorithm 4.1 applied to the unweighted615

data for the 2008 Big East men’s college football season.616

Example 4. The 2008 season has an integer k∗ = 6 and the following optimal617

fractional Z∗ matrix shown in Figure 8. The 3×3 fractional submatrix creates 3! = 6

Fig. 8. Algorithm 4.1 can also be applied to unweighted data. The interior point solution
of unweighted Example 4 is a fractional matrix Z∗(r, r) with a starting arrow, ending arrow, and
fractional submatrix.

618

subrankings of the items 4, 8, and 5 that are evaluated for optimality. Of these 6, only619

3 are indeed optimal, meaning p = 3, and P = [1 8 5 4 6 2 7 3], [1 5 4 8 6 2 7 3], [1 4 8 5 6 2 7 3].620

6.3. Revised Definition for Rankability that uses k, p, and diversity of621

P . We conclude this section that applies weighted ideas from this paper to unweighted622

data by presenting one final example: the unweighted data from the 1999 season of623

the ACC conference of college football. We run the original rankability method of624

Anderson et al., using the LP relaxation of the alternative formulation of Model (6.1)625

so that Theorem 6.3 and Algorithm 4.1 apply.626

Example 5. The 1999 season has an integer k∗ = 12 and the following interesting
optimal fractional Z∗ matrix.

Z∗(r, r) =



3 1 4 8 2 6 9 5 7

3 0 1 1 1 1 1 1 1 1
1 0 0 .36 .73 1 .62 1 1 1
4 0 .64 0 .36 1 1 .64 1 1
8 0 .28 .64 0 .64 .40 1 1 1
2 0 0 0 .36 0 .26 .64 1 .64
6 0 .38 0 .10 .74 0 .38 .74 .38
9 0 0 .36 0 .36 .62 0 .36 1
5 0 0 0 0 0 .26 .64 0 .64
7 0 0 0 0 .36 .62 0 .36 0


The interior point solution of unweighted Example 5 is a highly fractional matrix627

Z∗(r, r), which usually portends a large p value, yet p is small, namely p = 4. Even628
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though the set P contains just 4 optimal rankings, it is very diverse. Items vary629

greatly in their rank positions. For instance, item 6 ranges from third place to last630

place.631

P =





3
8
4
6
1
2
5
9
7


,



3
4
6
1
2
8
5
9
7


,



3
4
1
2
8
5
9
7
6


,



3
1
8
9
4
7
6
2
5




.

Figure 9 compares the P sets of two examples, Example 1 and Example 5. Ex-632

ample 1 has 8 rankings in its P set while Example 5 has just 4. The spaghetti plots633

show differences in neighboring rankings.5634

Fig. 9. Spaghetti plots and summary of diversity of P sets for Examples 1 and 5.

For Example 1, these differences are less dramatic and just between neighboring635

items in the rankings, e.g., items 8 and 12 swap as do items 1 and 5, and 2 and636

3. The relative positions of items in the rankings appears rather definite. On the637

other hand, Example 5 has messier spaghetti plots. Notice also the average Kendall638

rank correlation between the two examples. Example 1’s rankings have a high rank639

5A complete spaghetti plot would establish lines between all
(p
2

)
pairs of rankings. Since this is

too messy as it requires 3-D plots, our point is made by using the incomplete 2-D spaghetti plots
shown in Figure 9.
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correlation whereas Example 5’s rankings do not. This numerical indicator of the640

diversity of the two P sets corroborates the visual indicator. Example 5 also has a641

much higher percentage of fractional entries than Example 1. A high percentage of642

fractional entries in the optimal solution matrix can indicate either a large p or a very643

diverse P . In either case, the rankability is low.644

Example 5 makes the case for a revised definition of rankability. For the current645

definitions, for both weighted and unweighted data, rankability r is a function of two646

values, k and p. Yet perhaps rankability should be a function of three values, k, p,647

and the diversity of the set P . This is a direction for future work.648

7. Conclusions.649
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