A snapshot of an execution of a distributed algorithm should return
a configuration of an execution in the same computation.

Snapshots can be used for:

» Restarting after a failure.

» Debugging.

» Off-line determination of stable properties,
which remain true as soon as they have become true.

Examples: deadlock, garbage.
Challenge: Take a snapshot without (temporarily) freezing the execution.

26 / 366



We distinguish basic messages of the underlying distributed algorithm
and control messages of the snapshot algorithm.

A snapshot of a (basic) execution consists of:
» a local snapshot of the (basic) state of each process, and

> the channel state of (basic) messages in transit for each channel.

A snapshot is meaningful if it is a configuration of an execution
in the same computation as the actual execution.

27 / 366



We need to avoid the following situations.

1. Process p takes a local snapshot, and then sends a message m
to process g, where:

e g takes a local snapshot after the receipt of m,

e or mis included in the channel state of pg.

2. p sends m to g, and then takes a local snapshot, where:
e g takes a local snapshot before the receipt of m,

e and m is not included in the channel state of pgq.

28 /366



Chandy-Lamport algorithm

Consider a directed network with FIFO channels.

Initiators take a local snapshot of their state, and send a control message
(marker) to their neighbors.

When a process that hasn't yet taken a snapshot receives (marker), it

> takes a local snapshot of its state, and

» sends (marker) to all its neighbors.

Process g computes as channel state of pg the messages it receives via pg
after taking its local snapshot and before receiving (marker) from p.

If channels are FIFO, this produces a meaningful snapshot.

Message complexity: ©(E) (with E the number of edges)
Worst-case time complexity: O(D) (with D the diameter)

29 /366



Chandy-Lamport algorithm - Example

30 /366



Chandy-Lamport algorithm - Example

snapshot

30 /366



Chandy-Lamport algorithm - Example

(mkr)
mq my
snapshot

0

30 /366



Chandy-Lamport algorithm - Example

snapshot

0 |. (mkr)

30 /366



Chandy-Lamport algorithm - Example

m {mz}

The snapshot (processes red/blue/green, channels (), 0,0, {m>})
isn’t a configuration in the actual execution.

The send of my isn't causally before the send of mo.

So the snapshot is a configuration of an execution that is in
the same computation as the actual execution.

30 /366



Chandy-Lamport algorithm - Correctness

Claim: If a post-snapshot event e is causally before an event f,
then f is also post-snapshot.

This implies that the snapshot is a configuration of an execution
that is in the same computation as the actual execution.

Proof: The case that e and f occur at the same process is trivial.

Let e be a send and f the corresponding receive event.
Let e occur at p and f at q.

e is post-snapshot at p, so p sent (marker) to g before e.
Channels are FIFO, so g receives this (marker) before f.

Hence f is post-snapshot at gq.

31/366



Lai-Yang algorithm

Suppose channels are non-FIFO. We use piggybacking.

Initiators take a local snapshot of their state.

When a process has taken its local snapshot, it appends true to
each outgoing basic message.

When a process that hasn’t yet taken a snapshot receives a message
with true or a control message (see next slide) for the first time,
it takes a local snapshot of its state before reception of this message.

Process g computes as channel state of pg the basic messages
without the tag true that it receives via pq after its local snapshot.

32 /366



Lai-Yang algorithm - Control messages

Question: How does g know when it can determine the channel state
of pg?

Answer: p sends a control message to g, informing g how many
basic messages without the tag true p sent into pgq.

These control messages also ensure that all processes eventually take
a local snapshot.

33/366



Lai-Yang algorithm - Multiple snapshots

Question: How can multiple subsequent snapshots be supported ?

Answer: Each snapshot is provided with a sequence number.

Basic message carry the sequence number of the last snapshot at
the sender (instead of true).

Control messages carry the sequence number of their snapshot.

34 /366



