
Snapshots

A snapshot of an execution of a distributed algorithm should return
a configuration of an execution in the same computation.

Snapshots can be used for:

I Restarting after a failure.

I Debugging.

I Off-line determination of stable properties,
which remain true as soon as they have become true.

Examples: deadlock, garbage.

Challenge: Take a snapshot without (temporarily) freezing the execution.

26 / 366



Snapshots

We distinguish basic messages of the underlying distributed algorithm
and control messages of the snapshot algorithm.

A snapshot of a (basic) execution consists of:

I a local snapshot of the (basic) state of each process, and

I the channel state of (basic) messages in transit for each channel.

A snapshot is meaningful if it is a configuration of an execution
in the same computation as the actual execution.

27 / 366



Snapshots

We need to avoid the following situations.

1. Process p takes a local snapshot, and then sends a message m
to process q, where:

• q takes a local snapshot after the receipt of m,

• or m is included in the channel state of pq.

2. p sends m to q, and then takes a local snapshot, where:

• q takes a local snapshot before the receipt of m,

• and m is not included in the channel state of pq.

28 / 366



Chandy-Lamport algorithm

Consider a directed network with FIFO channels.

Initiators take a local snapshot of their state, and send a control message
〈marker〉 to their neighbors.

When a process that hasn’t yet taken a snapshot receives 〈marker〉, it

I takes a local snapshot of its state, and

I sends 〈marker〉 to all its neighbors.

Process q computes as channel state of pq the messages it receives via pq
after taking its local snapshot and before receiving 〈marker〉 from p.

If channels are FIFO, this produces a meaningful snapshot.

Message complexity: Θ(E ) (with E the number of edges)

Worst-case time complexity: O(D) (with D the diameter)

29 / 366



Chandy-Lamport algorithm - Example

The snapshot (processes red/blue/green, channels ∅, ∅, ∅, {m2})
isn’t a configuration in the actual execution.

The send of m1 isn’t causally before the send of m2.

So the snapshot is a configuration of an execution that is in
the same computation as the actual execution.

30 / 366



Chandy-Lamport algorithm - Example

snapshot
〈mkr〉

〈mkr〉
m1

The snapshot (processes red/blue/green, channels ∅, ∅, ∅, {m2})
isn’t a configuration in the actual execution.

The send of m1 isn’t causally before the send of m2.

So the snapshot is a configuration of an execution that is in
the same computation as the actual execution.

30 / 366



Chandy-Lamport algorithm - Example

snapshot

〈mkr〉

∅

m1

〈mkr〉
m2

The snapshot (processes red/blue/green, channels ∅, ∅, ∅, {m2})
isn’t a configuration in the actual execution.

The send of m1 isn’t causally before the send of m2.

So the snapshot is a configuration of an execution that is in
the same computation as the actual execution.

30 / 366



Chandy-Lamport algorithm - Example

snapshot

m1

∅ 〈mkr〉

∅
m2

The snapshot (processes red/blue/green, channels ∅, ∅, ∅, {m2})
isn’t a configuration in the actual execution.

The send of m1 isn’t causally before the send of m2.

So the snapshot is a configuration of an execution that is in
the same computation as the actual execution.

30 / 366



Chandy-Lamport algorithm - Example

m1 {m2}

The snapshot (processes red/blue/green, channels ∅, ∅, ∅, {m2})
isn’t a configuration in the actual execution.

The send of m1 isn’t causally before the send of m2.

So the snapshot is a configuration of an execution that is in
the same computation as the actual execution.

30 / 366



Chandy-Lamport algorithm - Correctness

Claim: If a post-snapshot event e is causally before an event f ,
then f is also post-snapshot.

This implies that the snapshot is a configuration of an execution
that is in the same computation as the actual execution.

Proof : The case that e and f occur at the same process is trivial.

Let e be a send and f the corresponding receive event.

Let e occur at p and f at q.

e is post-snapshot at p, so p sent 〈marker〉 to q before e.

Channels are FIFO, so q receives this 〈marker〉 before f .

Hence f is post-snapshot at q.

31 / 366



Lai-Yang algorithm

Suppose channels are non-FIFO. We use piggybacking.

Initiators take a local snapshot of their state.

When a process has taken its local snapshot, it appends true to
each outgoing basic message.

When a process that hasn’t yet taken a snapshot receives a message
with true or a control message (see next slide) for the first time,
it takes a local snapshot of its state before reception of this message.

Process q computes as channel state of pq the basic messages
without the tag true that it receives via pq after its local snapshot.

32 / 366



Lai-Yang algorithm - Control messages

Question: How does q know when it can determine the channel state
of pq ?

Answer: p sends a control message to q, informing q how many
basic messages without the tag true p sent into pq.

These control messages also ensure that all processes eventually take
a local snapshot.

33 / 366



Lai-Yang algorithm - Multiple snapshots

Question: How can multiple subsequent snapshots be supported ?

Answer: Each snapshot is provided with a sequence number.

Basic message carry the sequence number of the last snapshot at
the sender (instead of true).

Control messages carry the sequence number of their snapshot.

34 / 366


