
Distributed Algorithms

Paul Anderson
Based on slides and content associated with the following book:
Distributed Algorithms: An Intuitive Approach (2nd edition) 

MIT Press, 2018

1 / 366



Algorithms

A skilled programmer must have good insight into algorithms.

At bachelor level you were offered courses on basic algorithms:

searching, sorting, pattern recognition, graph problems, ...

You learned how to detect such subproblems within your programs,
and solve them effectively.

You’re trained in algorithmic thought for uniprocessor programs

(e.g. divide-and-conquer, greedy, memoization).

2 / 366



Distributed systems

A distributed system is an interconnected collection of
autonomous processes.

Motivation:

I resource sharing

I information exchange

I multicore programming

I replication to increase reliability

I parallelization to increase performance

3 / 366



Distributed versus uniprocessor

Distributed systems differ from uniprocessor systems in three aspects.

I Lack of knowledge on the global state : A process has no
up-to-date knowledge on the local states of other processes.

Example: Termination and deadlock detection become issues.

I Lack of a global time frame : No total order on events by
their temporal occurrence.

Example: Mutual exclusion becomes an issue.

I Nondeterminism : Execution by processes is nondeterministic,
so running a system twice can give different results.

Example: Race conditions.

4 / 366



Aim of this course

The algorithms section of this course offers a 
bird’s-eye view on a wide range of algorithms 
for basic and important challenges in 
distributed systems.

It aims to provide you with an algorithmic 
frame of mind for solving fundamental 
problems in distributed computing.

I Handwaving correctness arguments.

I Back-of-the-envelope complexity calculations.

I Carefully developed exercises to acquaint you with intricacies
of distributed algorithms.

5 / 366



Message passing

The two main paradigms to capture communication in
a distributed system are message passing and shared memory.

We’ll focus mainly on message passing when discussing 
algorithms.

(The technical systems component of this course discusses shared memory.)

Asynchronous communication means that sending and receiving 
of a message are independent events.

In case of synchronous communication, sending and receiving of 
a message are coordinated to form a single event; a message is 
only allowed to be sent if its destination is ready to receive it.

We’ll mainly consider asynchronous communication.

6 / 366



Communication protocols

In a computer network, messages are transported through a medium, 
which may lose, duplicate or garble these messages.

A communication protocol detects and corrects such flaws during 
message passing.

Example: Sliding window protocols.

"Conceptually, each portion of the transmission (packets in most data 
link layers, but bytes in TCP) is assigned a unique consecutive sequence 
number, and the receiver uses the numbers to place received packets in 
the correct order, discarding duplicate packets and identifying missing 
ones. The problem with this is that there is no limit on the size of the 
sequence number that can be required."

7 / 366



Assumptions

Unless stated otherwise, we assume:

I a strongly connected network

I each process knows only its neighbors

I message passing communication

I asynchronous communication

I channels are non-FIFO

I the delay of messages in channels is arbitrary but finite

I channels don’t lose, duplicate or garble messages

I processes don’t crash

I processes have unique id’s

8 / 366



Directed versus bidirectional channels

Channels can be directed or bidirectional.

Question: What is more general, an algorithm for a directed
or for an undirected network ?

Remarks:

I Algorithms for undirected networks often include ack’s.

I Acyclic networks must always be undirected

(else the network wouldn’t be strongly connected - every vertex 
is reachable).

9 / 366



Complexity measures

Resource consumption of an execution of a distributed algorithm
can be considered in several ways.

Message complexity: Total number of messages exchanged.

Bit complexity: Total number of bits exchanged.
(Only interesting when messages can be very long.)

Time complexity: Amount of time consumed.
(We assume: (1) event processing takes no time, and
(2) a message is received at most one time unit after it is sent.)

Space complexity: Amount of memory needed for the processes.

Different executions require different consumption of resources.

We consider worst- and average-case complexity (the latter with
a probability distribution over all executions).

10 / 366



Big O notation

Complexity measures state how resource consumption
(messages, time, space) grows in relation to input size.

For example, if an algorithm has a worst-case message complexity
of O(n2), then for an input of size n, the algorithm in the worst case
takes in the order of n2 messages.

Let f , g : N→ R>0.

f = O(g) if, for some C > 0, f (n) ≤ C ·g(n) for all n ∈ N.

f = Θ(g) if f = O(g) and g = O(f ).

11 / 366



Formal framework

Now follows a formal framework for describing
distributed systems, mainly to fix terminology.

In this course, correctness proofs and
complexity estimations of algorithms
are presented in an informal fashion.

12 / 366



Transition systems

The (global) state of a distributed system is called a configuration.

The configuration evolves in discrete steps, called transitions.

A transition system consists of:

I a set C of configurations;

I a binary transition relation → on C; and

I a set I ⊆ C of initial configurations.

γ ∈ C is terminal if γ → δ for no δ ∈ C.

13 / 366



Executions

An execution is a sequence γ0 γ1 γ2 · · · of configurations that
either is infinite or ends in a terminal configuration, such that:

I γ0 ∈ I, and

I γi → γi+1 for all i ≥ 0

(except, for finite executions, the terminal γi at the end).

A configuration δ is reachable if there is a γ0 ∈ I and
a sequence γ0 γ1 γ2 · · · γk = δ with γi → γi+1 for all 0 ≤ i < k .

14 / 366



States and events

A configuration of a distributed system is composed from
the states at its processes, and the messages in its channels.

A transition is associated to an event (or, in case of synchronous
communication, two events) at one (or two) of its processes.

A process can perform internal, send and receive events.

A process is an initiator if its first event is an internal or send event.

An algorithm is centralized if there is exactly one initiator.

A decentralized algorithm can have multiple initiators.

15 / 366



Assertions

An assertion is a predicate on the configurations of an algorithm.

An assertion is a safety property if it is true in each configuration
of each execution of the algorithm.

“something bad will never happen”

An assertion is a liveness property if it is true in some configuration
of each execution of the algorithm.

“something good will eventually happen”

16 / 366



Invariants

Assertion P on configurations is an invariant if:

I P(γ) for all γ ∈ I, and

I if γ → δ and P(γ), then P(δ).

Each invariant is a safety property.

17 / 366



Causal order

In each configuration of an asynchronous system, applicable events
at different processes are independent.

The causal order ≺ on occurrences of events in an execution is
the smallest transitive relation such that:

I if a and b are events at the same process and a occurs before b,
then a ≺ b; and

I if a is a send and b the corresponding receive event, then a ≺ b.

This relation is irreflexive 

(never holds between a term and itself).

a � b denotes a ≺ b ∨ a = b.
18 / 366



Computations

If neither a � b nor b � a, then a and b are called concurrent.

A permutation of concurrent events in an execution doesn’t affect
the result of the execution.

These permutations together form a computation.

All executions of a computation start in the same initial configuration.

And if they are finite, they all end in the same terminal configuration.

19 / 366



Question

Consider the finite execution abc.

Let a ≺ b be the only causal relationship.

Which executions are in the same computation ?

20 / 366



Lamport’s clock

A logical clock C maps occurrences of events in a computation
to a partially ordered set such that a ≺ b ⇒ C (a) < C (b).

Lamport’s clock LC assigns to each event a the length k of
a longest causality chain a1 ≺ · · · ≺ ak = a.

LC can be computed at run-time:

Let a be an event, and k the clock value of the previous event
at the same process. (k = 0 if there is no previous event.)

∗ If a is an internal or send event, then LC (a) = k + 1.

∗ If a is a receive event, and b the send event corresponding to a,
then LC (a) = max{k , LC (b)}+ 1.

21 / 366



Question

Consider the following sequences of events at processes p0, p1, p2:

p0 : a s1 r3 b

p1 : c r2 s3

p2 : r1 d s2 e

si and ri are corresponding send and receive events, for i = 1, 2, 3.

Provide all events with Lamport’s clock values.

Answer: 1 2 8 9

1 6 7

3 4 5 6

22 / 366



Vector clock

Given processes p0, . . . , pN−1.

We define a partial order on NN by:

(k0, . . . , kN−1) ≤ (`0, . . . , `N−1) ⇐⇒ ki ≤ `i for all i = 0, . . . ,N−1.

Vector clock VC maps each event in a computation to a unique value
in NN such that a ≺ b ⇐⇒ VC (a) < VC (b).

VC (a) = (k0, . . . , kN−1) where each ki is the length of a longest
causality chain ai

1 ≺ · · · ≺ ai
ki

of events at process pi with ai
ki
� a.

VC can also be computed at run-time.

23 / 366



Question

Consider the same sequences of events at processes p0, p1, p2:

p0 : a s1 r3 b

p1 : c r2 s3

p2 : r1 d s2 e

Provide all events with vector clock values.

Answer: (1 0 0) (2 0 0) (3 3 3) (4 3 3)

(0 1 0) (2 2 3) (2 3 3)

(2 0 1) (2 0 2) (2 0 3) (2 0 4)

24 / 366



Vector clock - Correctness

Let a ≺ b.

Any causality chain for a is also one for b. So VC (a) ≤ VC (b).

At the process where b occurs, there is a longer causality chain
for b than for a. So VC (a) < VC (b).

Let VC (a) < VC (b).

Consider the longest causality chain ai
1 ≺ · · · ≺ ai

k = a of events
at the process pi where a occurs.

VC (a) < VC (b) implies that the i-th coefficient of VC (b) is ≥ k .

So a � b.

Since a and b are distinct, a ≺ b.

25 / 366




